
- 1 -

Kennesaw State University ECET 4530 – Laboratory Exercise PLC-1D

Electrical Engineering Technology RSLogix 5000 Software – Configuration & Programming

Introduction:
This exercise begins the programming portion of this experiment during which you will utilize the

RSLogix 5000 software to develop a program that can be downloaded into the PLC in order to
automate the proposed motor control system.

You will begin by configuring a new “project” within the RSLogix environment for the Compact Logix
Controller (PLC) and other addressable devices that will be utilized within the control system.
Ladder logic will then be used to create a program for the PLC that will provide an operator with
basic stop-start control of Motor #1, which is energized by a contactor whose field coil is wired to
output #0 of the PLC. Once the program is complete, you will download the program into the PLC
and test the operation of the system, troubleshooting the program as necessary.

Note – If you have not yet completed parts B and C of this experiment because you haven’t been able
to access a lab bench that contains one of the physical motor control systems, you can begin
part D (steps 1-47 on pages 1-12) on any lab bench since all of the desktop computers contain
the RSLogix software. Just be sure to save your programs on a memory stick. Then, when
one of the physical systems become available, you can go back and complete parts A-C, after
which you can load your project into RSLogix software on that bench and continue on with
the final steps of part D as well as part E of this experiment.

Procedure:

Log-In to the Desktop Computer

Log-in to the desktop computer using the following credentials:
Username: .\student
Password: student

RSLOGIX 5000 SOFTWARE

RSLogix 5000 is the software that you will be utilizing to program the Compact Logix PLCs.
Software Revision 20 is loaded on the laboratory computers. Note that the software revision must
match the firmware revision that is loaded into the PLCs, which is currently version 20.04.

Execute the RSLogix 5000 software by double-clicking on the RSLogix 5000 shortcut present on
the desktop of the computer. If a shortcut is not available on desktop, the RSLogix software can
be found by clicking on the Start button and choosing:

All ProgramsRockwell SoftwareRSLogix 5000 Enterprise Series RSLogix 5000.

Once the software loads, you can begin the process of creating a ladder-logic program for the PLC.
To do this, you must first create a “project”.

Note that, once you save your software project on a memory stick, you can also restart the software
and reload your project simply by double-clicking the project file located on your memory stick.

Do NOT save your project on the desktop computer’s hard-drive. The instructor will
regularly delete any projects that are saved on the hard-drives of the lab computers.

If you do not have access to a
physical motor control system,
you can still complete the first

12 pages of this procedure
using any computer that

contains the RSLogix software,
after which you can complete
the remainder once a physical

system is available for use.

- 2 -

Creating a New Project & Specifying the Controller, its Modules, and the VFD

Whenever you create a new project, you must first specify and characterize the controller (PLC) that
will be utilized and the modules (if any) that are directly connected to the controller. This allows
the RSLogix software to preconfigure its environment for all of the operational parameters of those
devices, in-turn allowing the programmer to directly control or interface with those devices without
necessarily knowing the technical aspects of their operation.

For this exercise, you will utilize a modular PLC that is composed of a:

 1769-L32E Compact Logix 5332E Controller (E  includes an Ethernet port) with a:

 1769-IQ16 16-port, 24VDC, Digital Input Module, and a

 1769-OW16 16-port, Relay Output Module.

Note – the input and output modules are directly connected to and communicate with the controller
via its “Local” communication bus (CompactBus). The bus is characterized by positional
“slots”, such that the controller is considered to reside in slot 0, and the module (IQ16)
that is directly plugged into the controller’s CompactBus is considered to reside in slot 1.
The module (OW16) that is plugged into CompactBus port that is available on the opposite
side of the slot 1 module is considered to reside in slot 2, and so forth.

Additionally, when creating the project, you must specify any remote devices that will communicate
with or be controlled by the PLC via a communication network. The proposed system also includes
a PowerFlex 40-E VFD that contains a 22-COMM-E (Ethernet) communications port.

Since an Ethernet network will be utilized for communication between the PLC and the VFD, the
previously-assigned IP addresses must also be specified when configuring the project.

CREATE A NEW PROJECT – SELECT & CONFIGURE THE PLC’S CONTROLLER (CPU):

1. Run the RSLogix 5000 Software and open a “New Project” from the Quick Start window.

A “New Controller” dialog box will appear.

2. Locate and select the 1769-L32E controller in
the Type field.

3. Configure the controller as shown to the right

and click “OK”.

Note – you may replace the word “Main” in
the Name field with your last name.

 (I.e. – “Lastname_Controller”)

The 1769-L32E controller should now appear under the
I/O Configuration folder in the Controller Organizer
section on the left-side of the RS Logix 5000 window.

If the Controller Organizer section is not
visible, click View in the main window and
highlight the Controller Organizer option.

- 3 -

4. Right-click on the 1769-L32E Ethernet Port LocalENB
and choose Properties.

This will allow you to specify the IP Address that was
previously assigned to the PLC in part C of this lab.

5. In the Module Properties Report: Controller:1 window that appears,
configure the IP Address as shown below and click OK.

ADD & CONFIGURE THE INPUT/OUTPUT MODULES ATTACHED TO THE CONTROLLER:

6. In the Controller Organizer window, locate
CompactBus Local under I/O Configuration.
You may need to click to expand the contents.

7. Right-click on CompactBus Local and select
New Module… in order to add the input module.

8. When the Select Module Type window appears,
uncheck all of the filter option boxes except for
“Digital” and “Allen-Bradley”.

Locate and select a 1769-IQ16 from the list of
modules in the lower field and click Create.

A New Module pop-up window will appear.

9. Configure the module as shown to the left but
do NOT click OK yet.

Note – Slot 1 is selected because the IQ16 is
the first module that is attached to the
controller’s local communication bus.

10. In the Module Definition section of the

New Module window, click “Change…”

11. Change the value of “Electronic Keying” to “Disable Keying” in the Module Definition

window and click OK to accept that change.

Electronic keying is utilized to ensure that the device defined in your project is the same as the
actual installed device including the device’s firmware revision. Although Allen-Bradley
recommends that the “Disable Keying” option not be used due to safety risks, we will utilize
this option in the Q-215 lab due to the variance of the modules that may be present in the lab.

192.169.3.20

- 4 -

12. The Electronic Keying option in the New Module window should now read “Disable Keying”.
If this is correct, click “OK”.

The 1769-IQ16 should now appear under
CompactBus Local in the I/O Configuration folder.

13. Once again, right-click on CompactBus Local and select New Module…

to add the output module.

14. Select and configure a 1769-OW16 in the same manner that
the 1769-IQ16 was configured. Note that the OW16 is the
second module (Slot 2) on the local communication bus.

15. Once complete, the 1769-IQ16 and the 1769-OW16
should both be present under CompactBus Local in the
I/O Configuration folder.

ADD & CONFIGURE THE POWERFLEX 40 VFD CONNECTED TO THE ETHERNET NETWORK:

16. Although it is not directly connected to the PLC’s local CompactBus, you must also add the
PowerFlex 40 Variable Frequency Drive to the PLC’s I/O Configuration since the PLC will
communicate with and control the operation of the VFD via the system’s Ethernet network.

Right-click on 1769-L32E Ethernet Port LocalENB

within the I/O Configuration folder and then select
New Module…

17. In the Select Module window, locate and

select a PowerFlex 40-E drive.

Note – the drive will be easier to locate if
you uncheck all of the filters except
“Drive” and “Allen-Bradley”.

18. Configure the module as shown to the right

but do not click “OK” yet. (Be sure to change
Electronic Keying to “Disable Keying”.)

19. Select the Connection tab in the New Module

window and uncheck the box next to
“Use Unicast Connection over EtherNet/IP”.

20. Confirm that the module is configured correctly, click “OK”.

The PowerFlex 40 should new appear in the
I/O Configuration folder as an Ethernet device.

All of the control system devices are now configured.

192.169.3.22

- 5 -

You have completed the initial setup of the project during which you defined and configured the
PLC that you will be using, including both the controller (CPU) and the attached input and output
modules, along with the variable frequency drive (VFD) that will be controlled by the PLC as a
network-connected device.

Note – if additional modules or network-connected devices need to be added into the control system
in the future, such as a second Input Module, another VFD, or a Remote I/O Module, they
would be added and configured in a similar manner to those previously configured.

At this point, it is recommended that you save your project on a USB memory-stick and that you
also make a backup copy (named “Lastname_Controller_new.ACD”) of the project file.

Once you complete the tutorial, you can use the “new” version of the project file to begin creating
new programs without having to repeat the steps required to select and configure all of the control
system devices.

You are now ready to begin creating your first Ladder Logic program.

Notes Regarding the Operation of the Motor Control System for Program #1:

The PLC-based motor control system constructed for use during this experiment contains two
induction motors, the first of which is energized by means of a contactor whose field-coil is wired
directly to the PLC’s output module, and the second of which is supplied by a PowerFlex 40 VFD
that will be controlled remotely by the PLC via the control system’s Ethernet network.

Although the physical system contains two motors, we will begin by creating a simple program that
provides “Start-Stop” control only for motor #1 such that the PLC will start the motor by
energizing the main contactor’s field-coil when an operator presses the “Start” button and the PLC
will stop the motor by de-energizing the field-coil when an operator presses the “Stop” button.

As a reminder, the normally-closed (NC) “Stop” and normally-open (NO) “Start” pushbuttons are
wired to Inputs 0 and 1 respectively of the PLC’s input module and the contactor’s field-coil is
wired to Output 0 of the PLC’s output module, as shown below in a simplified drawing of the
control system.

Motor Control System Components for Program #1

The ladder logic program for this motor controller will only utilize two of the three primary ladder

instructions (XIC and OTE) and a ladder topology that is similar to the control circuit from the
basic stop-start motor controller that was presented at the beginning of the semester. This will
allow us to focus on the fundamental concepts and procedures associated with creating the ladder
logic program and the use of those primary instructions, without having to deal with the more
complex logic and the additional instructions that will be required to control the operation of the
VFD-supplied motor.

1

120/208V

2

3

N

3 Squirrel-Cage
Induction Machine

1 4

52

63

A-B CompactLogix PLC

Input Ports Output Ports

I0 I8

I15

I4

I5

I6

I7

I9

I10

I11

I12

I13

I14

I1

I2

I3

O0 O8

O15

O4

O5

O6

O7

O9

O10

O11

O12

O13

O14

O1

O2

O3

Vin VinCommon

Powernet

24Vdc+ -

24Vdc only 120Vac-dc max
1

15

3

5

7

9

11

13

2

16

4

6

8

10

12

14

1

15

3

5

7

9

11

13

2

16

4

6

8

10

12

14

Contactor Module

1

15

3

5

7

9

11

13

2

16

4

6

8

10

12

14

Pushbutton

1 2

3 4

Pushbutton

1 2

3 4

Stop Start

- 6 -

Development of the Initial Ladder-Logic Program

The initial program will be developed in two stages:

i) You will create a generic ladder diagram that provides the logic required for the proposed
motor-control system, after which

ii) You will modify the instructions within the ladder diagram to link their operation to that of
the appropriate inputs and outputs to which the pushbuttons and field-coil are wired.

Note that, although these two stages could be combined into one, it will be easier to understand the
concepts presented if you perform them one at a time.

CREATION OF THE GENERAL LADDER DIAGRAM:

In order to begin creating the ladder diagram, you must open the Routine Editor window within the
RSLogix program.

21. In the main RSLogix 5000 window, Choose ViewToolbars.
When the Toolbars window opens, be sure the first five options
are selected and then click “OK”.

22. In the Controller Organizer window,

expand the MainProgram folder by
clicking next to the folder.

23. Double-click the MainRoutine icon

to open the Routine Editor window.

24. The Routine Editor window should now display a blank ladder diagram as shown below:

Note the column of e’s that appear to the left of
the rung. The e’s signify that the rung is in
“edit mode” to signify that one or more of the
instructions on the rung have not yet been
properly defined. Once all instructions have
been properly defined, the e’s will disappear.

25. Choose the Bit tab in the New Component

toolbar. The Bit tab displays instructions that
are associated with a single-bit in memory.

26. Left-click and hold the XIO instruction.

27. Using the mouse, drag and place this instruction in the left-most position on Rung 0. Note that

as you drag the instruction into the Routine Editor window, small green circles will appear on
the ladder diagram that show the available locations in which the instruction may be placed.

- 7 -

28. Right-click on the “?” above the XIO instruction and choose “New Tag”.

Tags: Tags contain information that identifies data stored in memory,
allowing that data to be associated with a specific instruction in
order to define its operation.

For example – a bit in memory that is used to define the state
of the XIO (0  TRUE, 1  FALSE)

New Tag Data Fields:

Name – an alpha/numeric identifier (including underscores)
assigned to data stored in memory.

Names can be used to help clarify the ladder logic
structure by relating data to a specific task, function,
or the physical device linked to that data.

Names must begin with an alphabetic character,
cannot be greater than 40 characters in length,
and are not case sensitive.

Description – text-based field that may be used to further identify the function of the data.

Type – defines how the tag operates.

Base – a tag that results in the allocation of memory (when initially created) and that
provides a reference to that data stored in that memory location, allowing the
data to be directly linked to the operation of an instruction.

Alias – a tag that allows the programmer to assign a name to an existing base tag, such
as the base tags that are automatically created when a specific module or device
is added to the controller’s configuration.

For Example – RSLogix 5000 created a new base tag for each input port when the
IQ-16 module was added to the controller’s configuration. The programmer can
then create an Alias tag named “Stop” and assign it to one of those base tags.

Alias For (only active for Type: Alias) – the pre-defined base tag re-named by the Alias tag.

Data Type – defines the type of data stored at the specific memory location, such as:

BOOL (Boolean): 0 or 1 INT (Integer): –32768 to +32767

Scope – defines whether a tag is global or local. The controller allows an application to be split
into multiple programs or subroutines. A global tag is available to all of the programs,
while a local tag is available only to a specific program, such as “Main Program”.

External Access – defines whether the tag will have Read/Write, Read Only, or no (None) access
from external applications such as HMIs.

Style – defines how the tag is displayed. (Style does not affect the “Data Type”)

 Binary: Base 2 Decimal: Base 10

Constant – prevents executing logic (instructions) from writing values to the tag if checked.

- 8 -

29. Define the New Tag fields as shown to the right and click OK.

This XIO instruction will provide the logic for the controller’s
“Stop” button within the ladder diagram. The instruction will
return TRUE when the bit referenced by the tag “Stop” is “0”,
and it will return FALSE when the bit is “1”.

Note – an XIO was chosen because it resembles a NC contact,
and a Stop-Start controller utilizes a NC “Stop” button.
It turns out that you will need to change the instruction
type to XIC when its operation is linked to that of Input 0,
but for now it should remain as an XIO.

30. The Stop button should now appear in

your ladder diagram. Note that a green
bar may appear behind the XIO.

31. Add a parallel Branch to the right of the “Stop” button

and place an XIC on each of the parallel paths.

The XIC in the upper branch will provide the logic for the controller’s “Start” button, while the
XIC in the lower branch will eventually act as a “hold-in” contact after “Start” is released.

32. Define a New Tag for the XIC in the upper branch (similar to the Stop tag)

but name it “Start”.

Note – the lower XIC’s tag will be defined later

33. Place an “OTE” instruction to the right of the parallel branches.

The OTE instruction will provide the function of the field coil in the stop-start controller which,
when energized, actuates the contactor’s main contacts, in-turn energizing motor #1.

In terms of the logic of the ladder rung, when the rung condition to the left of the OTE is TRUE,
the OTE sets its bit to “1” (i.e. – energize the motor), and when the rung condition is FALSE,
the OTE resets its bit to a “0” (i.e. – de-energize the motor).

34. Define a New Tag for the OTE and name it “Motor_1”.

35. In a physical system, an auxiliary-contact from the main

contactor is placed in parallel with the NO (Start) button to
act as a “hold-in” contact once the field-coil is energized.

Since the Motor_1 OTE represents the main contactor’s field coil, the “hold-in” XIC can be
assigned the same tag as the OTE such that the XIC’s state will be determined by the state of
the bit Motor_1. (I.e. – the XIC will be TRUE when the OTE sets bit Motor_1 to a “1”)

To copy the OTE’s tag onto the XIC, left-click and hold the mouse
pointer over the OTE’s tag name “Motor_1” and drag the tag name
over to the “hold-in” XIC instruction until a green circle appears next
to the XIC’s “?”, at which point you can release the mouse button.

- 9 -

The “hold-in” XIC should now have the same tag name as
the Motor_1 OTE.

Note – you could also have assigned the tag name Motor_1
to the XIC by double-clicking on
the “?” (tag name) above the XIC to
enable a drop-down menu.

Opening the drop-down menu displays a list of all of the
previously-defined tags from which you could have
select the desired tag (Motor_1) by locating and
double-clicking on Motor_1 in the list.

Also note that there are tags displayed that you did not create.
These are the base tags that the RSLogix software created
when you added the controller/modules/VFD to the project.

Additionally, if you need to delete (or edit) a tag that you defined, you can
double-click the Program Tags entry within the MainProgram folder in the
Controller Organizer window.

The ladder editor window will be replaced by a list of the tags that have the Scope: MainProgram.
The Monitor Tags tab is selected by default, allowing you to view the tags and their states.

To delete (or edit) a tag, click the Edit Tags tab at the
bottom of the tag display.

Then, right-click the grey box next to the tag that you want to delete (or edit)
and select Delete from the list of options if you want to delete that tag.

When you are done viewing or editing the tags, double-click the
MainRoutine entry within the MainProgram folder in the
Controller Organizer window to return to the MainRoutine editor.

Even though your ladder diagram contains only a single rung, you have already finished creating the

general ladder diagram that will provide the operational logic for Motor Control System #1,
a PLC-based, Stop-Start controller for motor #1. Your ladder diagram should appear as follows:

Since the Stop XIO is normally TRUE, when the Start XIC becomes TRUE, the rung condition will
become TRUE, causing the Motor_1 OTE to set the bit Motor_1 to “1”, in-turn causing the
Motor_1 XIC to also become TRUE. When this occurs, even if the Start XIC returns to FALSE, the
rung condition will remain TRUE, causing the Motor_1 OTE to hold bit Motor_1 at a “1”.

If the Stop XIO becomes FALSE, the rung condition will become FALSE, causing the Motor_1 OTE
to reset the bit Motor_1 to “0”, in-turn causing the Motor_1 XIC to become FALSE., at which point
the rung condition will remain FALSE even if the Stop XIO returns to its normally TRUE state.

Assume that the Stop, Start, and Motor_1
bits are all initially (normally) “0”.

The ladder diagram shown to the left is
currently highlighted for this condition.

- 10 -

Although you have created a general ladder diagram that provides the operational logic for a basic
Stop-Start motor controller, in its present form it will not actually cause the PLC to do anything
because the states of the Stop, Start, and Motor_1 instructions have not yet been linked to operation
of the physical devices that are wired to the input ports and output ports of the PLC.

For example, the OW16 Output Module determines the states (ON or OFF) of its output ports based
on the values of a set of bits that are contained within its memory, such that:

 When bit O.Data.X is a “1”, Output Port X is switched ON, and

 When bit O.Data.X is a “0”, Output Port X is switched OFF.

As currently configured, the Motor_1 OTE in your ladder diagram only has the ability to set or reset
a bit named Motor_1 within the PLC’s memory. But, if the Motor_1 OTE could instead be
reconfigured to set or reset the bit O.Data.0 in the OW16’s memory, then the OTE would control
the state (ON or OFF) of Output Port 0 to which the field-coil of the main contactor is wired.

Similarly, the values of a set of bits that are contained within the memory of the IQ16 Input Module
are determined by the states (TRUE or OFF) of its input ports, such that:

 When Input Port X detects +24VDC, bit I.Data.X is set to a “1”, and

 When Input Port X does not detect +24VDC, bit I.Data.X is reset to a “0”.

Since pushbuttons are wired between a +24VDC source and Input Ports 0 and 1, the states of Inputs
0 and 1 are directly affected by whether each of these buttons are being pressed or released.

But, as currently configured, the states (TRUE or FALSE) of the Stop XIO and the Start XIC are only
determined by the values of the Stop and Start bits within the PLC’s memory. If these instructions
could be reconfigured to instead have their states based on the values of the bits I.Data.0 and
I.Data.1 that are located in the IQ16’s memory, then the states of the Stop XIO and the Start XIC
would in-turn depend on whether or not the Stop and Start buttons are being pressed.

Modifying/Linking the Ladder Instructions to the States of the Input & Output Ports

36. Right-click on the tag name of the Stop XIO in rung 0
and choose Edit “Stop” Properties.

37. Change the “Type” to “Alias”.

38. In the “Alias For” field, click on the down-arrow and locate the “Local:1:I”

option in the menu that appears.

“Local:1:I” contains all of the accessible tags that the RSLogix software automatically created
when you initially added the Input Module to the project.

39. Expand “Local:1:I” by clicking the preceding .

40. “Local:1:I.Data” is an INT (16-bit integer) tag contains all 16

of the bits associated with the states of Input Ports 0 through 15.

Locate and click the down-arrow next to “Local:1:I.Data”
to access the individual bits.

41. To assign bit “I.Data.0” to the XIO, double-click on the box containing “0”.

“Local:1” refers to the device that resides
in slot 1 of the controller’s CompactBus.

- 11 -

42. The “Alias For” field of the “Tag Properties – Stop” window
should appear as shown to the right. If so, click “OK”.

You have now assigned the bit “I.Data.0” to the Stop XIO, in-turn
linking the state of the XIO to the position of the NC Stop pushbutton
that is wired to Input Port 0 (zero) of the PLC.

The base tag <Local:1:I.Data.0> displays (in blue) directly above the XIO, the alias tag Stop
displays immediately above the base tag, and the description (NC “Stop” Pushbutton) displays
at the very top.

43. Modify the tag of the Start XIC to become an alias tag assigned to the

base tag <Local:1:I.Data.1> in order to link the state of the Start XIC
to the position of the NO Start pushbutton that is wired to Input Port 1.

44. Similarly, modify the tag of the Motor_1 OTE to become an alias tag assigned
to the base tag <Local:2:O.Data.0> in order to link the value of bit “O.Data.0”
to the state of the Motor_1 OTE, in-turn allowing the state of the field-coil that
is wired to Output Port 0 (zero) to be determined by the state of the OTE.

Note that, when Edit Tag is selected, it is the actual tag
itself that is edited, not the specific instruction.

Thus, the change of tag Motor_1 to an alias tag will be reflected on all instructions
that have been assigned the Motor_1 tag, including the hold-in XIC.

45. Rung 0 of your ladder diagram should now display as shown below:

The program is almost complete! The required instructions have been placed on the rung and
alias tags have been assigned to all of the instructions, allowing for their operation to be linked
to that of the input and output modules, but there is one last item that needs to be addressed.

As mentioned in step 29, an XIO was initially chosen as the logic instruction for “Stop” because a
Stop-Start controller utilizes a NC pushbutton in that position and the XIO resembles a NC contact.
Although it makes the logic of the ladder rung “appear” similar to that of a physical Stop-Start
controller, this actually presents a problem because our system contains a physical NC pushbutton
that is wired to Input 0 of the Input Module as its “Stop” button.

Within the structure of the ladder rung, the Stop instruction needs to remain (normally) TRUE when
“Stop” is not being pressed and then transition to a FALSE state when the “Stop” is pressed.

But the NC Stop button will constantly apply +24VDC to Input Port 0, causing the Input Module to
keep bit I.Data.0 set to a “1” and, in-turn, causing the Stop XIO to remain FALSE whenever the
Stop button is not being pressed. This is contrary to our needs.

Reminder – the Output Module resides in
slot 2 of the CompactBus. (Local:2:O).

- 12 -

On the other hand, the state of an XIC will remain TRUE whenever its bit is held at a value of “1”.
Thus, in order to provide the correct logic for the Stop-Start controller as wired by compensating
for the choice of a physical NC Stop button that holds bit I.Data.0 at a “1” when not being pressed,
a Stop XIC is required on the rung instead of a Stop XIO.

The Stop XIO can be changed to a Stop XIC by performing the following step:

46. Double-click on the actual instruction icon of the Stop XIO,
expand the drop-down menu that will appear on the XIO,
and double-click on the “XIC Examine On” option within
the Bit folder to change the XIO to an XIC.

Once complete, the rung should now appear as:

Now the Stop XIC will return a TRUE state when the NC Stop button is not being pressed since

the unpressed Stop button will provide +24VDC to Input Port 0 and bit I.Data.0 will be a “1”.

Checking Your Program for Errors

At this point, you have completed the initial ladder logic program that is required for the exercise.
Your ladder diagram should be identical to the one shown above.

Remember that the presence of a column of e’s to the left of any rung indicates that the rung is still
in “edit mode” and has not yet been fully configured. But, even if all rungs have been fully
configured, there may still be some errors that remain unseen.

To have to RSLogix software check your ladder diagram for errors:

47. Locate and click the icon at the top of the RSLogix 5000 main window.

If any errors are found, they will be reported as either “fatal errors” or “warning” in the field
immediately below your ladder diagram at the bottom of the RSLogix 5000 main window.
Make the appropriate corrections until no errors are reported.

Before you proceed any further, you need to save an updated version of your project. And since
you have completed the first program within this tutorial lab, choose the Save As option under
the File menu in the RSLogix window and rename your project:

“Lastname_Controller_P1.ACD”

You are now ready to download your program into the PLC and verify its proper operation.

In order to download your program into the PLC, you must first set the communications “path”
that the RSLogix software can use to locate your controller.

- 13 -

Setting the Communications Path to the PLC (Requires a physical system to continue)

You must be at a lab bench with a physical motor control system to complete the remaining steps.

48. Click the to the right of the “Path” field in the main window.

49. In the “Who Active” window that appears, expand
the “AB_ETHIP-1, Ethernet” item by clicking
its and keep expanding the revealed items until
the “00, CompactLogix Processor” is located.

Note that the items in your list, such as the IP
Address assigned to the controller, may differ
slightly from those shown in the list to the right.

50. Select the “00, CompactLogix Processor” and click the Set Project Path

button, and then close the “Who Active” window.

The path should now appear in the “Path” field as:

Note that, once the correct path has initially been defined, future attempts to set the path can
be completed by clicking the down-arrow on the right side of the “Path” field and selecting
the correct path from the displayed list of recently set paths.

Connection Status of the RS Logix Software to the PLC

The RSLogix software on the desktop computer will either be in an “Offline” or an “Online” state
with respect to the operation of the PLC.

Offline – the RS Logix software is not in direct (real-time) contact with the PLC.

While offline, the ladder diagram displayed within the RS Logix window is
completely independent of the program that is stored in the PLC’s memory.

The RSLogix software must be “Offline” while creating or editing the ladder diagram
because structural changes can only be made to the ladder diagram while in the
offline state.

Online – the RS Logix software is communicating in real-time with the PLC. While online:

 the ladder diagram displayed within the RSLogix window is directly linked to the
program that is stored within the PLC’s memory such that the current state of the
instructions and the values stored within the tag locations will be shown on the
ladder diagram and updated in real time.

 the operator of the desktop computer has the ability to both monitor and affect the
operation of the PLC.

 the RSLogix software will display the PLC’s current operational state, which for
this exercise will either be Program Mode or Run Mode.

Note that, when the key-switch is set to the REM (remote) position,
the RSLogix software has the ability to remotely toggle the PLC
between the Program and Run modes.

- 14 -

Operational State of the PLC

SAFETY NOTE – remotely switching the PLC between Program and Run modes can be dangerous,
especially in a live industrial setting where unexpected motion or energization
could pose a safety hazard to human life.

Program Mode (online) – the RSLogix software is communicating in real-time with the PLC
but the PLC is not executing the program stored in its memory.

While in Program Mode, minor (non-structural) changes can be made to the program,
such as the values stored in a tag location or specified in a MOV instruction.

Although the logic states of the ladder instructions will be displayed on the ladder
diagram while in this mode, the PLC is configured such that all output ports will be
false (off or de-energized) while in Program Mode.

Run Mode (online) – the RSLogix software is communicating in real-time with the PLC while
the PLC is executing the program stored in its memory.

While in Run Mode, logic states of the ladder instructions will be displayed on the
ladder diagram.

Although changes cannot be made to the ladder logic program while the PLC is in this
mode, the PLC’s operation, including the state of its outputs, can be directly affected
by the operator of the desktop computer. (This will be discussed at a later time)

SAFETY NOTE – while using the PLC system in the lab, if the PLC system starts operating in an

unexpected or unsafe manner when the PLC is switched from Program to Run
mode, DO NOT PANIC and DO NOT CLOSE THE RS LOGIX PROGRAM WINDOW!!!

Simple toggle the PLC back into Program mode using the RSLogix software.

If this does not solve the problem, then shut-off the main breaker located on the
Lab Volt power supply to de-energize the entire system.

Downloading Your Program into the PLC and Going Online with the Controller

Now that the “path” to the controller has been set within the RSLogix software, you can Download
your program into the PLC’s memory and “Go Online” with the PLC as follows:

51. Click the down-arrow just to the right of the “Offline” field in the

upper-left portion of the main RSLogix window and select
“Download” to begin the download process.

52. If a Connecting to Controller window appears (it probably won’t) stating that you must first

update the firmware to be able to connect to the PLC, click on “Update Firmware” and answer
positively to any other Update windows that may appear until the update is complete.

53. If a “Connected to Go Online” window appears stating that “The open project has changes that

aren’t in the controller” appears, choose “Download”.

- 15 -

54. A “Download” window will appear that will allow you to
transfer your program into the PLC’s memory.

 Read the warning and then click “Download”.

55. Once the download is complete, the status of the PLC
will either switch to Remote Program mode
or a warning window will appear asking if you want to

“Change Controller mode to Remote Run?”

If that window appears, click “Yes”.

Otherwise, click the down-arrow next to “Rem Prog”
and select “Run Mode” from the list of menu items.

This will cause the PLC to begin executing (running) the downloaded program.

Operational State of the Motor Control System

The PLC should now be in “Run” mode and the RSLogix software should
be “Online” with the PLC and configured for “Rem Run” operation.

The “Run” state of the PLC is also indicated by means of a small
green LED that is located on the CPU of the physical PLC, as can
be seen by looking through the plexiglass cover of the PLC
module that is mounted within the LabVolt bench.

Note that the states of the various input and output ports of the PLC are also
indicated by means of a series of (green or orange) LEDs that are located on
the input and output modules of the physical PLC.

Whenever +24VDC is detected at one of the input ports, the LED associated with
that port will illuminate green, and whenever one of the output ports is
switched on, the LED associated with that port will illuminate orange.

Initially, only the LED associated with input port 0 will be illuminated because
a NC (Stop) pushbutton is wired to that input, such that the button will provide
+24VDC to that input when it is not being pressed (i.e. – in its normal position).

The LEDs on the physical input and output modules can be invaluable when troubleshooting the
operation of a PLC-based motor controller. For example, if this system does not start-up when
Start is pressed, this could be due to either an electrical problem or a logic (programming) problem.

Since the Start button is normally-open, if the LED associated with the input port to which the button
is wired does not illuminate when Start is pressed, then there is most likely an electrical/wiring
problem with that part of the control circuit.

But if the input LED does illuminate, indicating that the input detects +24VDC when Start is pressed,
and the LED associated with the output to which the field coil is wired does not illuminate, then
the cause is most likely a logic (programming) problem.

And if the LEDs associated with the Start button’s input and the field coil’s output both illuminate,
then there is most likely an electrical/wiring problem with either the output module and field coil
or the main power connection to the motor via the contactor’s main contacts.

Compact Logix L32E

 C
P

U
 -

I/O
OK

DCH0

RUN
FORCE

BATT

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

24VDC Snk/Src

D
C
 IN

P
U

T

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

A
C

 D
C

 O
U

T

RELAY

- 16 -

Additionally, the RSLogix software also provides some features that can be invaluable when
troubleshooting the operation of a PLC-based motor controller. While the RSLogix software is
“Online” with a PLC, the current operational state of the various instructions contained in that
PLC’s ladder logic program is indicated on the ladder diagram that is displayed within the Routine
Editor window, such that:

TRUE logic instructions (XICs) will be highlighted in green and any Boolean output
instructions (OTEs) whose assigned bit is a “1” will also be highlighted in green.

Initially, when the PLC is switched to Run mode, only the Stop XIC should be highlighted green.

But, if the Start button is pressed, the Start XIC should be highlighted green while the button is
being held-in. At this point, the rung-condition will be TRUE, causing the Motor_1 OTE to set its
assigned bit to a “1”, in-turn causing both Motor_1 OTE and the Motor_1 XIC to also be
highlighted green.

When the Start button is released, the green highlight will be removed from the Start XIC, but the
other instructions will remain green because the “hold-in” XIC keeps the rung condition TRUE.

After Start is pressed and released, if Stop is pressed, the Stop XIC should no longer be highlighted
green while the button is being held-in, and since pressing Stop will cause the rung condition to
become FALSE, the OTE will reset its assigned bit to a “0”, in-turn causing the green highlight to
be removed from both Motor_1 OTE and the Motor_1 XIC.

And finally, when the Stop button is released, Stop XIC should be highlighted green again, and the
system is back to its initial condition.

Verify the Proper Operation of the Motor Control System

Verify the operation of the motor control system by utilizing the Stop and Start buttons to determine
if the system performs properly.

While you are testing the system, pay attention to both the operation of the physical setup and the
instructions displayed on the ladder diagram within the RSLogix window.

For example, verify that:

 When you press the Start button, the contactor’s main contacts should immediately actuate,
causing Motor #1 to accelerate quickly up to its synchronous speed.

Pressing Stop should cause the contactor to dropout and Motor #1 to be de-energized.

The motor should remain de-energized while Start and Stop are pressed simultaneously.

Be sure to test to all of the system’s specified operational characteristics. If any errors are detected
or if anything is not working properly:

 Toggle the PLC from Run Mode  Program Mode

 Toggle RSLogix from Program Mode  Offline

 Troubleshoot your program

 Download the updated program and try again!

This ends part D of the experiment.

