Industrial Distribution & NEC – Exam II pt. B Print Name (Last Name First):\_

Instructions: Part "B" of this exam is composed of a set of "take-home" problems that must be completed individually, under "closed-book" conditions, with absolutely no assistance from any other person or resource except for the PowerPoint slides provided on the course website.

**Problem #9**) Given the  $3\Phi$  distribution system shown in the following figure:

Note - Assume a 75°C terminal temperature rating and a 30°C ambient temperature.



**a**) Determine the 3Φ, L-L-L **short circuit current** available at the secondary terminals of the 500kVA transformer using the point-to-point method of calculation.

*I*<sub>SCA(SecT1)</sub> = \_\_\_\_\_ **amps** 

**b**) Determine the 3Φ, L-L-L **short circuit current** available at "load-end" of the 200' feeder that connects the two transformers.

$$I_{SCA(Feeder)} =$$
\_\_\_\_\_amps

**c**) Determine the 3Φ, L-L-L **short circuit current** available at the secondary terminals of the 480-208V transformer using the point-to-point method of calculation.

$$I_{SCA(SecT2)} =$$
\_\_\_\_\_\_amps

**Problem #10**) Given the  $3\Phi$  distribution system shown in the following figure:



Neglecting any transformer losses, determine the *operational line-voltage* seen at the load outlet assuming that rated voltage is present at the secondary terminals of the 200kVA transformer and that the load is drawing rated power.

(Note – also assume that both circuits are fed through <u>aluminum conduit</u> and that the <u>operational temperature of the circuit conductors is 60°C</u>.)

$$V_{Line(Load)} =$$
\_\_\_\_\_\_ volts

## ECET 4520 – Fall 2014 – Exam II References "C" Values for Conductors and Busway

| Table 6. | " C" | Values | for | Conductors | and | Busway |
|----------|------|--------|-----|------------|-----|--------|

| Coppe | 21       |            |        |        |             |         |                       |       |       |             |       |  |  |  |
|-------|----------|------------|--------|--------|-------------|---------|-----------------------|-------|-------|-------------|-------|--|--|--|
| AWG   | Three Si | ingle Cond | uctors |        |             |         | Three-Conductor Cable |       |       |             |       |  |  |  |
| or    | Conduit  | 2          |        |        |             | Conduit |                       |       |       |             |       |  |  |  |
| kemil | Steel    |            |        | Nonmag | Nonmagnetic |         |                       |       |       | Nonmagnetic |       |  |  |  |
|       | 600V     | 5KV        | 15KV   | 600V   | 5KV         | 15KV    | 600V                  | 5KV   | 15KV  | 600V        | 5KV   |  |  |  |
| 14    | 389      | 389        | 389    | 389    | 389         | 389     | 389                   | 389   | 389   | 389         | 389   |  |  |  |
| 12    | 617      | 617        | 617    | 617    | 617         | 617     | 617                   | 617   | 617   | 617         | 617   |  |  |  |
| 10    | 981      | 981        | 981    | 981    | 981         | 981     | 981                   | 981   | 981   | 981         | 981   |  |  |  |
| 8     | 1557     | 1551       | 1557   | 1558   | 1555        | 1558    | 1559                  | 1557  | 1559  | 1559        | 1558  |  |  |  |
| 6     | 2425     | 2406       | 2389   | 2430   | 2417        | 2406    | 2431                  | 2424  | 2414  | 2433        | 2428  |  |  |  |
| 4     | 3806     | 3750       | 3695   | 3825   | 3789        | 3752    | 3830                  | 3811  | 3778  | 3837        | 3823  |  |  |  |
| 3     | 4760     | 4760       | 4760   | 4802   | 4802        | 4802    | 4760                  | 4790  | 4760  | 4802        | 4802  |  |  |  |
| 2     | 5906     | 5736       | 5574   | 6044   | 5926        | 5809    | 5989                  | 5929  | 5827  | 6087        | 6022  |  |  |  |
| 1     | 7292     | 7029       | 6758   | 7493   | 7306        | 7108    | 7454                  | 7364  | 7188  | 7579        | 7507  |  |  |  |
| 1/0   | 8924     | 8543       | 7973   | 9317   | 9033        | 8590    | 9209                  | 9086  | 8707  | 9472        | 9372  |  |  |  |
| 2/0   | 10755    | 10061      | 9389   | 11423  | 10877       | 10318   | 11244                 | 11045 | 10500 | 11703       | 11528 |  |  |  |
| 3/0   | 12843    | 11804      | 11021  | 13923  | 13048       | 12360   | 13656                 | 13333 | 12613 | 14410       | 14118 |  |  |  |
| 4/0   | 15082    | 13605      | 12542  | 16673  | 15351       | 14347   | 16391                 | 15890 | 14813 | 17482       | 17019 |  |  |  |
| 250   | 16483    | 14924      | 13643  | 18593  | 17120       | 15865   | 18310                 | 17850 | 16465 | 19779       | 19352 |  |  |  |
| 300   | 18176    | 16292      | 14768  | 20867  | 18975       | 17408   | 20617                 | 20051 | 18318 | 22524       | 21938 |  |  |  |
| 350   | 19703    | 17385      | 15678  | 22736  | 20526       | 18672   | 19557                 | 21914 | 19821 | 22736       | 24126 |  |  |  |
| 400   | 20565    | 18235      | 16365  | 24296  | 21786       | 19731   | 24253                 | 23371 | 21042 | 26915       | 26044 |  |  |  |
| 500   | 22185    | 19172      | 17492  | 26706  | 23277       | 21329   | 26980                 | 25449 | 23125 | 30028       | 28712 |  |  |  |
| 600   | 22965    | 20567      | 47962  | 28033  | 25203       | 22097   | 28752                 | 27974 | 24896 | 32236       | 31258 |  |  |  |
| 750   | 24136    | 21386      | 18888  | 28303  | 25430       | 22690   | 31050                 | 30024 | 26932 | 32404       | 31338 |  |  |  |
| 1000  | 25278    | 22539      | 19923  | 31490  | 28083       | 24887   | 33864                 | 32688 | 29320 | 37197       | 35748 |  |  |  |

| rmers |
|-------|
| )     |

| KVA    | %R     | %X     | %Z     | X/R   |
|--------|--------|--------|--------|-------|
| 3.0    | 3.7600 | 1.0000 | 3.8907 | 0.265 |
| 6.0    | 2.7200 | 1.7200 | 3.2182 | 0.632 |
| 9.0    | 2.3100 | 1.1600 | 2.5849 | 0.502 |
| 15.0   | 2.1000 | 1.8200 | 2.7789 | 0.867 |
| 30.0   | 0.8876 | 1.3312 | 1.6000 | 1.5   |
| 45.0   | 0.9429 | 1.4145 | 1.7000 | 1.5   |
| 75.0   | 0.8876 | 1.3312 | 1.6000 | 1.5   |
| 112.5  | 0.5547 | 0.8321 | 1.0000 | 1.5   |
| 150.0  | 0.6657 | 0.9985 | 1.2000 | 1.5   |
| 225.0  | 0.6657 | 0.9985 | 1.2000 | 1.5   |
| 300.0  | 0.6657 | 0.9985 | 1.2000 | 1.5   |
| 500.0  | 0.7211 | 1.0816 | 1.3000 | 1.5   |
| 750.0  | 0.6317 | 3.4425 | 3.5000 | 5.45  |
| 1000.0 | 0.6048 | 3.4474 | 3.5000 | 5.70  |
| 1500.0 | 0.5617 | 3.4546 | 3.5000 | 6.15  |
| 2000.0 | 0.7457 | 4.9441 | 5.0000 | 6.63  |
| 2500.0 | 0.7457 | 4.9441 | 5.0000 | 6.63  |

Note: UL Listed transformers 25KVA and greater have a ±10% tolerance on their nameplate impedance.

Table 310.16 Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Burled), Based on Ambient Temperature of 30°C (86°F)

|                                      | Temperature Rating of Conductor (See Table 310.13.) |                                                              |                                                                                                                            |                                 |                                                               |                                                                                                                             |                                      |  |  |  |  |
|--------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
|                                      | 60°C (140°F)                                        | 75°C (167°F)                                                 | 90°C (194°F)                                                                                                               | 60°C<br>(140°F)                 | 75°C (167°F)                                                  | 90°C (194°F)                                                                                                                |                                      |  |  |  |  |
| Size AWG or<br>kcmil                 | Types TW, UF                                        | Types RHW,<br>THHW, THW,<br>THWN, XHHW,<br>USE, ZW<br>COPPER | Types TBS, SA, SIS,<br>FEP, FEPB, MI, RHH,<br>RHW-2, THHN,<br>THHW, THW-2,<br>THWN-2, USE-2,<br>XHH, XHHW,<br>XHHW-2, ZW-2 | Types<br>TW, UF<br>ALUMIN       | Types RHW,<br>THHW, THW,<br>THWN,<br>XHHW, USE<br>UM OR COPPE | Types TBS, SA, SIS,<br>THHN, THHW,<br>THW-2, THWN-2,<br>RHH, RHW-2, USE-2,<br>XHH, XHHW,<br>XHHW-2, ZW-2<br>R-CLAD ALUMINUM | Size AWG or<br>kcmil                 |  |  |  |  |
| 18                                   | _                                                   | _                                                            | 14                                                                                                                         | _                               | _                                                             | _                                                                                                                           | _                                    |  |  |  |  |
| 16<br>14*<br>12*<br>10*<br>8         | 20<br>25<br>30<br>40                                | 20<br>25<br>35<br>50                                         | 18<br>25<br>30<br>40<br>55                                                                                                 | 20<br>25<br>30                  | 20<br>30<br>40                                                | 25<br>35<br>45                                                                                                              | 12*<br>10*<br>8                      |  |  |  |  |
| 6<br>4<br>3<br>2<br>1                | 55<br>70<br>85<br>95<br>110                         | 65<br>85<br>100<br>115<br>130                                | 75<br>95<br>110<br>130<br>150                                                                                              | 40<br>55<br>65<br>75<br>85      | 50<br>65<br>75<br>90<br>100                                   | 60<br>75<br>85<br>100<br>115                                                                                                | 6<br>4<br>3<br>2<br>1                |  |  |  |  |
| 1/0<br>2/0<br>3/0<br>4/0             | 125<br>145<br>165<br>195                            | 150<br>175<br>200<br>230                                     | 170<br>195<br>225<br>260                                                                                                   | 100<br>115<br>130<br>150        | 120<br>135<br>155<br>180                                      | 135<br>150<br>175<br>205                                                                                                    | 1/0<br>2/0<br>3/0<br>4/0             |  |  |  |  |
| 250<br>300<br>350<br>400<br>500      | 215<br>240<br>260<br>280<br>320                     | 255<br>285<br>310<br>335<br>380                              | 290<br>320<br>350<br>380<br>430                                                                                            | 170<br>190<br>210<br>225<br>260 | 205<br>230<br>250<br>270<br>310                               | 230<br>255<br>280<br>305<br>350                                                                                             | 250<br>300<br>350<br>400<br>500      |  |  |  |  |
| 600<br>700<br>750<br>800<br>900      | 355<br>385<br>400<br>410<br>435                     | 420<br>460<br>475<br>490<br>520                              | 475<br>520<br>535<br>555<br>585                                                                                            | 285<br>310<br>320<br>330<br>355 | 340<br>375<br>385<br>395<br>425                               | 385<br>420<br>435<br>450<br>480                                                                                             | 600<br>700<br>750<br>800<br>900      |  |  |  |  |
| 1000<br>1250<br>1500<br>1750<br>2000 | 455<br>495<br>520<br>545<br>560                     | 545<br>590<br>625<br>650<br>665                              | 615<br>665<br>705<br>735<br>750                                                                                            | 375<br>405<br>435<br>455<br>470 | 445<br>485<br>520<br>545<br>560                               | 500<br>545<br>585<br>615<br>630                                                                                             | 1000<br>1250<br>1500<br>1750<br>2000 |  |  |  |  |
|                                      |                                                     |                                                              | CORRECTION F                                                                                                               | ACTORS                          |                                                               |                                                                                                                             |                                      |  |  |  |  |
| Ambient Temp.<br>(°C)                | For ambient tem                                     | peratures other than a                                       | 30°C (86°F), multiply the<br>factor shown be                                                                               | allowable an<br>clow.           | mpacities shown a                                             | above by the appropriate                                                                                                    | Ambient Temp.<br>(°F)                |  |  |  |  |
| 21-25                                | 1.08                                                | 1.05                                                         | 1.04                                                                                                                       | 1.08                            | 1.05                                                          | 1.04                                                                                                                        | 70-77                                |  |  |  |  |
| 26-30                                | 1.00                                                | 1.00                                                         | 1.00                                                                                                                       | 1.00                            | 1.00                                                          | 1.00                                                                                                                        | 78-86                                |  |  |  |  |
| 31-35                                | 0.91                                                | 0.94                                                         | 0.96                                                                                                                       | 0.91                            | 0.94                                                          | 0.96                                                                                                                        | 87-95                                |  |  |  |  |
| 36-40                                | 0.82                                                | 0.88                                                         | 0.91                                                                                                                       | 0.82                            | 0.88                                                          | 0.91                                                                                                                        | 96-104                               |  |  |  |  |
| 41-45                                | 0.71                                                | 0.82                                                         | 0.87                                                                                                                       | 0.71                            | 0.82                                                          | 0.87                                                                                                                        | 105-113                              |  |  |  |  |
| 46-50                                | 0.58                                                | 0.75                                                         | 0.82                                                                                                                       | 0.58                            | 0.75                                                          | 0.82                                                                                                                        | 114-122                              |  |  |  |  |
| 51-55                                | 0.41                                                | 0.67                                                         | 0.76                                                                                                                       | 0.41                            | 0.67                                                          | 0.76                                                                                                                        | 123-131                              |  |  |  |  |
| 56-60                                | _                                                   | 0.58                                                         | 0.71                                                                                                                       | _                               | 0.58                                                          | 0.71                                                                                                                        | 132-140                              |  |  |  |  |
| 61-70                                | _                                                   | 0.33                                                         | 0.58                                                                                                                       | _                               | 0.33                                                          | 0.58                                                                                                                        | 141-158                              |  |  |  |  |
| 71-80                                | -                                                   | —                                                            | 0.41                                                                                                                       | —                               | -                                                             | 0.41                                                                                                                        | 159-176                              |  |  |  |  |

\* See 240.4(D).

|                          |                                           |                                           |                        |                                      | C                                         | onductors                            |                                           |                                           | Direct-Current Resistance at 75°C (167°F) |                                           |                                           |                                           |                                           |                                           |                                           |
|--------------------------|-------------------------------------------|-------------------------------------------|------------------------|--------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
|                          |                                           | S                                         | tranding               |                                      |                                           | 0                                    | verall                                    | 82                                        |                                           | Co                                        | pper                                      |                                           |                                           |                                           |                                           |
| Size                     | A                                         | rea                                       |                        | Diar                                 | neter                                     | Dian                                 | neter                                     | A                                         | rea                                       | Une                                       | oated                                     | Coa                                       | ited                                      | Alun                                      | ninum                                     |
| (AWG<br>or<br>kcmil)     | mm <sup>2</sup>                           | Circular<br>mils                          | Quantity               | mm                                   | in.                                       | mm                                   | in.                                       | mm <sup>2</sup>                           | in.2                                      | ohm/<br>km                                | ohm/<br>kFT                               | ohm/<br>km                                | ohm/<br>kFT                               | ohm/<br>km                                | ohm/<br>kFT                               |
| 14<br>14                 | 2.08<br>2.08                              | 4110<br>4110                              | 1<br>7                 | 0.62                                 | 0.024                                     | 1.63<br>1.85                         | 0.064<br>0.073                            | 2.08<br>2.68                              | 0.003<br>0.004                            | 10.1<br>10.3                              | 3.07<br>3.14                              | 10.4<br>10.7                              | 3.19<br>3.26                              | 16.6<br>16.9                              | 5.06<br>5.17                              |
| 12<br>12                 | 3.31<br>3.31                              | 6530<br>6530                              | 1<br>7                 | 0.78                                 | 0.030                                     | 2.05<br>2.32                         | 0.081 0.092                               | 3.31<br>4.25                              | 0.005                                     | 6.34<br>6.50                              | 1.93<br>1.98                              | 6.57<br>6.73                              | 2.01<br>2.05                              | 10.45<br>10.69                            | 3.18<br>3.25                              |
| 10<br>10                 | 5.261<br>5.261                            | 10380<br>10380                            | 1<br>7                 | 0.98                                 | 0.038                                     | 2.588<br>2.95                        | 0.102                                     | 5.26<br>6.76                              | 0.008 0.011                               | 3.984<br>4.070                            | 1.21<br>1.24                              | 4.148<br>4.226                            | 1.26<br>1.29                              | 6.561<br>6.679                            | 2.00<br>2.04                              |
| 8                        | 8.367<br>8.367                            | 16510<br>16510                            | 17                     | 1.23                                 | 0.049                                     | 3.264<br>3.71                        | 0.128<br>0.146                            | 8.37<br>10.76                             | 0.013<br>0.017                            | 2.506<br>2.551                            | 0.764<br>0.778                            | 2.579<br>2.653                            | 0.786<br>0.809                            | 4.125<br>4.204                            | 1.26<br>1.28                              |
| 6<br>4<br>3<br>2<br>1    | 13.30<br>21.15<br>26.67<br>33.62<br>42.41 | 26240<br>41740<br>52620<br>66360<br>83690 | 7<br>7<br>7<br>7<br>19 | 1.56<br>1.96<br>2.20<br>2.47<br>1.69 | 0.061<br>0.077<br>0.087<br>0.097<br>0.066 | 4.67<br>5.89<br>6.60<br>7.42<br>8.43 | 0.184<br>0.232<br>0.260<br>0.292<br>0.332 | 17.09<br>27.19<br>34.28<br>43.23<br>55.80 | 0.027<br>0.042<br>0.053<br>0.067<br>0.087 | 1.608<br>1.010<br>0.802<br>0.634<br>0.505 | 0.491<br>0.308<br>0.245<br>0.194<br>0.154 | 1.671<br>1.053<br>0.833<br>0.661<br>0.524 | 0.510<br>0.321<br>0.254<br>0.201<br>0.160 | 2.652<br>1.666<br>1.320<br>1.045<br>0.829 | 0.808<br>0.508<br>0.403<br>0.319<br>0.253 |
| 1/0<br>2/0<br>3/0<br>4/0 | 53.49<br>67.43<br>85.01<br>107.2          | 105600<br>133100<br>167800<br>211600      | 19<br>19<br>19<br>19   | 1.89<br>2.13<br>2.39<br>2.68         | 0.074<br>0.084<br>0.094<br>0.106          | 9.45<br>10.62<br>11.94<br>13.41      | 0.372<br>0.418<br>0.470<br>0.528          | 70.41<br>88.74<br>111.9<br>141.1          | 0.109<br>0.137<br>0.173<br>0.219          | 0.399<br>0.3170<br>0.2512<br>0.1996       | 0.122<br>0.0967<br>0.0766<br>0.0608       | 0.415<br>0.329<br>0.2610<br>0.2050        | 0.127<br>0.101<br>0.0797<br>0.0626        | 0.660<br>0.523<br>0.413<br>0.328          | 0.201<br>0.159<br>0.126<br>0.100          |
| 250<br>300<br>350        | 127<br>152<br>177                         |                                           | 37<br>37<br>37         | 2.09<br>2.29<br>2.47                 | 0.082<br>0.090<br>0.097                   | 14.61<br>16.00<br>17.30              | 0.575<br>0.630<br>0.681                   | 168<br>201<br>235                         | 0.260<br>0.312<br>0.364                   | 0.1687<br>0.1409<br>0.1205                | 0.0515<br>0.0429<br>0.0367                | 0.1753<br>0.1463<br>0.1252                | 0.0535<br>0.0446<br>0.0382                | 0.2778<br>0.2318<br>0.1984                | 0.0847<br>0.0707<br>0.0605                |
| 400<br>500<br>600        | 203<br>253<br>304                         |                                           | 37<br>37<br>61         | 2.64<br>2.95<br>2.52                 | 0.104<br>0.116<br>0.099                   | 18.49<br>20.65<br>22.68              | 0.728<br>0.813<br>0.893                   | 268<br>336<br>404                         | 0.416<br>0.519<br>0.626                   | 0.1053<br>0.0845<br>0.0704                | 0.0321<br>0.0258<br>0.0214                | 0.1084<br>0.0869<br>0.0732                | 0.0331<br>0.0265<br>0.0223                | 0.1737<br>0.1391<br>0.1159                | 0.0529<br>0.0424<br>0.0353                |
| 700<br>750<br>800        | 355<br>380<br>405                         | =                                         | 61<br>61<br>61         | 2.72<br>2.82<br>2.91                 | 0.107<br>0.111<br>0.114                   | 24.49<br>25.35<br>26.16              | 0.964<br>0.998<br>1.030                   | 471<br>505<br>538                         | 0.730<br>0.782<br>0.834                   | 0.0603<br>0.0563<br>0.0528                | 0.0184<br>0.0171<br>0.0161                | 0.0622<br>0.0579<br>0.0544                | 0.0189<br>0.0176<br>0.0166                | 0.0994<br>0.0927<br>0.0868                | 0.0303<br>0.0282<br>0.0265                |
| 900<br>1000<br>1250      | 456<br>507<br>633                         | Ξ                                         | 61<br>61<br>91         | 3.09<br>3.25<br>2.98                 | 0.122<br>0.128<br>0.117                   | 27.79<br>29.26<br>32.74              | 1.094<br>1.152<br>1.289                   | 606<br>673<br>842                         | 0.940<br>1.042<br>1.305                   | 0.0470<br>0.0423<br>0.0338                | 0.0143<br>0.0129<br>0.0103                | 0.0481<br>0.0434<br>0.0347                | 0.0147<br>0.0132<br>0.0106                | 0.0770<br>0.0695<br>0.0554                | 0.0235<br>0.0212<br>0.0169                |
| 1500<br>1750<br>20001    | 760<br>887<br>013                         | Ξ                                         | 91<br>127<br>127       | 3.26<br>2.98<br>3.19                 | 0.128<br>0.117<br>0.126                   | 35.86<br>38.76<br>41.45              | 1.412<br>1.526<br>1.632                   | 1011<br>1180<br>1349                      | 1.566<br>1.829<br>2.092                   | 0.02814<br>0.02410<br>0.02109             | 0.00858<br>0.00735<br>0.00643             | 0.02814<br>0.02410<br>0.02109             | 0.00883<br>0.00756<br>0.00662             | 0.0464<br>0.0397<br>0.0348                | 0.0141<br>0.0121<br>0.0106                |

Notes:

1. These resistance values are valid **only** for the parameters as given. Using conductors having coated strands, different stranding type, and, especially, other temperatures changes the resistance. 2. Formula for temperature change:  $R_2 = R_1 [1 + \alpha (T_2 - 75)]$  where  $\alpha_{ew} = 0.00323$ ,  $\alpha_{AL} = 0.00330$  at 75°C.

|                           | Ohms to Neutral per Kilometer<br>Ohms to Neutral per 1000 Feet |                  |                                                                   |                     |                  |                                                         |                     |                  |                                                        |                     |                  |                                                 |                     |                  |                              |
|---------------------------|----------------------------------------------------------------|------------------|-------------------------------------------------------------------|---------------------|------------------|---------------------------------------------------------|---------------------|------------------|--------------------------------------------------------|---------------------|------------------|-------------------------------------------------|---------------------|------------------|------------------------------|
| Size<br>(AWG<br>or kemil) | X <sub>L</sub> (Reactance) for<br>All Wires                    |                  | Alternating-Current<br>Resistance for<br>Uncoated<br>Copper Wires |                     |                  | Alternating-Current<br>Resistance for<br>Aluminum Wires |                     |                  | Effective Z at 0.85 PF<br>for Uncoated Copper<br>Wires |                     |                  | Effective Z at 0.85 PF<br>for Aluminum<br>Wires |                     |                  |                              |
|                           | PVC,<br>Aluminum<br>Conduits                                   | Steel<br>Conduit | PVC<br>Conduit                                                    | Aluminum<br>Conduit | Steel<br>Conduit | PVC<br>Conduit                                          | Aluminum<br>Conduit | Steel<br>Conduit | PVC<br>Conduit                                         | Aluminum<br>Conduit | Steel<br>Conduit | PVC<br>Conduit                                  | Aluminum<br>Conduit | Steel<br>Conduit | Size<br>(AWG<br>or<br>kcmil) |
| 14                        | 0.190                                                          | 0.240 0.073      | 10.2<br>3.1                                                       | 10.2<br>3.1         | 10.2<br>3.1      | _                                                       | _                   | _                | 8.9<br>2.7                                             | 8.9<br>2.7          | 8.9<br>2.7       | _                                               | _                   | _                | 14                           |
| 12                        | 0.177                                                          | 0.223            | 6.6<br>2.0                                                        | 6.6<br>2.0          | 6.6<br>2.0       | 10.5<br>3.2                                             | 10.5<br>3.2         | 10.5<br>3.2      | 5.6<br>1.7                                             | 5.6<br>1.7          | 5.6<br>1.7       | 9.2<br>2.8                                      | 9.2<br>2.8          | 9.2<br>2.8       | 12                           |
| 10                        | 0.164                                                          | 0.207            | 3.9<br>1.2                                                        | 3.9<br>1.2          | 3.9<br>1.2       | 6.6<br>2.0                                              | 6.6<br>2.0          | 6.6<br>2.0       | 3.6                                                    | 3.6<br>1.1          | 3.6              | 5.9<br>1.8                                      | 5.9<br>1.8          | 5.9<br>1.8       | 10                           |
| 8                         | 0.171                                                          | 0.213            | 2.56                                                              | 2.56<br>0.78        | 2.56             | 4.3                                                     | 4.3                 | 43<br>13         | 2.26                                                   | 2.26                | 2.30             | 3.6                                             | 3.6<br>1.1          | 3.6<br>1.1       | 8                            |
| 6                         | 0.167                                                          | 0.210            | 1.61                                                              | 1.61<br>0.49        | 1.61             | 2.66                                                    | 2.66<br>0.81        | 2.66             | 1.44                                                   | 1.48<br>0.45        | 1.48             | 2.33                                            | 2.36<br>0.72        | 2.36             | 6                            |
| 4                         | 0.157                                                          | 0.197            | 1.02                                                              | 1.02<br>0.31        | 1.02             | 1.67<br>0.51                                            | 1.67<br>0.51        | 1.67             | 0.95                                                   | 0.95<br>0.29        | 0.98             | 1.51                                            | 1.51<br>0.46        | 1.51             | 4                            |
| 3                         | 0.154                                                          | 0.194            | 0.82                                                              | 0.82                | 0.82             | 1.31                                                    | 1.35<br>0.41        | 1.31             | 0.75                                                   | 0.79<br>0.24        | 0.79             | 1.21                                            | 1.21<br>0.37        | 1.21             | 3                            |
| 2                         | 0.148                                                          | 0.187            | 0.62                                                              | 0.66                | 0.66             | 1.05                                                    | 1.05<br>0.32        | 1.05             | 0.62                                                   | 0.62<br>0.19        | 0.66             | 0.98                                            | 0.98                | 0.98             | 2                            |
| 1                         | 0.151                                                          | 0.187            | 0.49                                                              | 0.52<br>0.16        | 0.52             | 0.82                                                    | 0.85                | 0.82             | 0.52                                                   | 0.52<br>0.16        | 0.52             | 0.79                                            | 0.79<br>0.24        | 0.82             | 1                            |
| 1/0                       | 0.144                                                          | 0.180            | 0.39                                                              | 0.43                | 0.39             | 0.66                                                    | 0.69                | 0.66             | 0.43                                                   | 0.43<br>0.13        | 0.43             | 0.62                                            | 0.66                | 0.66             | 1/0                          |
| 2/0                       | 0.141                                                          | 0.177            | 0.33                                                              | 0.33                | 0.33             | 0.52                                                    | 0.52                | 0.52             | 0.36                                                   | 0.36                | 0.36             | 0.52                                            | 0.52                | 0.52             | 2/0                          |
| 3/0                       | 0.138                                                          | 0.171            | 0.253                                                             | 0.269               | 0.259            | 0.43                                                    | 0.43                | 0.43             | 0.289                                                  | 0.302               | 0.308            | 0.43                                            | 0.43<br>0.13        | 0.46             | 3/0                          |
| 4/0                       | 0.135                                                          | 0.167            | 0.203                                                             | 0.220               | 0.207            | 0.33                                                    | 0.36                | 0.33             | 0.243                                                  | 0.256               | 0.262            | 0.36                                            | 0.36                | 0.36             | 4/0                          |
| 250                       | 0.135                                                          | 0.171            | 0.171                                                             | 0.187               | 0.177            | 0.279                                                   | 0.295               | 0.282            | 0.217                                                  | 0.230               | 0.240            | 0.308                                           | 0.322               | 0.33             | 250                          |
| 300                       | 0.135                                                          | 0.167            | 0.144                                                             | 0.161<br>0.049      | 0.148            | 0.233                                                   | 0.249               | 0.236            | 0.194                                                  | 0.207               | 0.213            | 0.269                                           | 0.282               | 0.289            | 300                          |
| 350                       | 0.131                                                          | 0.164            | 0.125                                                             | 0.141 0.043         | 0.128            | 0.200                                                   | 0.217               | 0.207            | 0.174                                                  | 0.190               | 0.197            | 0.240 0.073                                     | 0.253               | 0.262            | 350                          |
| 400                       | 0.131<br>0.040                                                 | 0.161<br>0.049   | 0.108 0.033                                                       | 0.125<br>0.038      | 0.115            | 0.177                                                   | 0.194<br>0.059      | 0.180            | 0.161 0.049                                            | 0.174 0.053         | 0.184 0.056      | 0.217 0.066                                     | 0.233<br>0.071      | 0.240<br>0.073   | 400                          |

Table 9 Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, 60 Hz, 75°C (167°F) — Three Single Conductors in Conduit

## Notes:

1. These values are based on the following constants: UL-Type RHH wires with Class B stranding, in cradled configuration. Wire conductivities are 100 percent IACS copper and 61 percent IACS aluminum, and aluminum conduit is 45 percent IACS. Capacitive reactance is ignored, since it is negligible at these voltages. These resistance values are valid only at 75°C (167°F) and for the parameters as given, but are representative for 600-volt wire types operating at 60 Hz.

2. *Effective Z* is defined as  $R \cos(\theta) + X \sin(\theta)$ , where  $\theta$  is the power factor angle of the circuit. Multiplying current by effective impedance gives a good approximation for line-to-neutral voltage drop. Effective impedance values shown in this table are valid only at 0.85 power factor. For another circuit power factor (*PF*), effective impedance (*Ze*) can be calculated from *R* and *X*<sub>L</sub> values given in this table as follows:

 $Ze = R \times PF + X_L \sin[\cos^{-1}(PF)].$