To be completed individually by Nov. 2nd.

Print Name:

General Instructions:

You may submit your results in the form of a very neat and logically-ordered hand-written document that is stapled to the back of this cover-sheet.

All work/calculations must be shown and all final answers must be placed in spaces provided below. This assignment is due on Nov. 2nd.

VOLTAGE-DROP CALCULATIONS

Using the Effective Impedance Method, determine the operational (line) voltage at each of the locations shown in the following figure. Note that you may assume that rated voltage is provided at the secondary terminals of the service transformer and that you may neglect the panel/circuit-breaker/transformer impedances when performing these calculations.

Assume that all of the system's conductors are THHN copper and that each 3Φ circuit is fed through individual <u>aluminum conduit</u>. You may refer to the "Lab Assignment 3 Answers" that are available on the course webpage for the conductor sizes and transformer ratings.

Final Results: Copy all of your <u>final</u> answers into the blanks provided below.

Note - You must show all of the work required to obtain the required results on separate paper and attach that paper to the back of this handout.

Operational Voltage at Loc #1 –	volts	Total % Drop =	%
Operational Voltage at Loc #2 –	volts	Total % Drop =	%
Operational Voltage at Loc #3 –	volts	Total % Drop =	%

Do any of the feeder circuit, branch circuit, and/or overall voltage-drops exceed the maximum NEC standards? If so, specify which ones in the space below:

References

240.6 Standard Ampere Ratings.

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, 300, 350, 400, 450, 500, 600, 700, 800, 1000, 1200, 1600, 2000, 2500, 3000, 4000, 5000, and 6000 amperes.

Additional standard ampere ratings for fuses shall be 1, 3, 6, 10, and 601.

Table 310.16 Allowable Ampacities of Insulated Conductors Rated 0 Through 2000 Volts, 60°C Through 90°C (140°F Through 194°F), Not More Than Three Current-Carrying Conductors in Raceway, Cable, or Earth (Directly Burled), Based on Ambient Temperature of 30°C (86°F)

	Temperature Rating of Conductor (See Table 310.13.)									
	60°C (140°F)	75°C (167°F)	90°C (194°F)	60°C (140°F)	75°C (167°F)	90°C (194°F)				
Size AWG or	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE, ZW	Types TBS, SA, SIS, FEP, FEPB, MI, RHH, RHW-2, THHN, THHW, THW-2, THWN-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Types TW, UF	Types RHW, THHW, THW, THWN, XHHW, USE	Types TBS, SA, SIS, THHN, THHW, THW-2, THWN-2, RHH, RHW-2, USE-2, XHH, XHHW, XHHW-2, ZW-2	Size AWG or			
kemil		COPPER		ALUMIN	UM OR COPPE	R-CLAD ALUMINUM	kemil			
18 16 14* 12* 10* 8	20 25 30 40	20 25 35 50	14 18 25 30 40 55	20 25 30	20 30 40	25 35 45	12* 10* 8			
6 4 3 2 1	55 70 85 95 110	65 85 100 115 130	75 95 110 130 150	40 55 65 75 85	50 65 75 90 100	60 75 85 100 115	6 4 3 2 1			
1/0 2/0 3/0 4/0	125 145 165 195	150 175 200 230	170 195 225 260	100 115 130 150	120 135 155 180	135 150 175 205	1/0 2/0 3/0 4/0			
250 300 350 400 500	215 240 260 280 320	255 285 310 335 380	290 320 350 380 430	170 190 210 225 260	205 230 250 270 310	230 255 280 305 350	250 300 350 400 500			
600 700 750 800 900	355 385 400 410 435	420 460 475 490 520	475 520 535 555 585	285 310 320 330 355	340 375 385 395 425	385 420 435 450 480	600 700 750 800 900			
1000 1250 1500 1750 2000	455 495 520 545 560	545 590 625 650 665	615 665 705 735 750	375 405 435 455 470	445 485 520 545 560	500 545 585 615 630	1000 1250 1500 1750 2000			
			CORRECTION F	ACTORS						
Ambient Temp. (°C)	For ambient ten	peratures other than 3	30°C (86°F), multiply the factor shown be	allowable an clow.	mpacities shown a	above by the appropriate	Ambient Temp. (°F)			
21-25	1.08	1.05	1.04	1.08	1.05	1.04	70-77			
26-30	1.00	1.00	1.00	1.00	1.00	1.00	78-86			
31-35	0.91	0.94	0.96	0.91	0.94	0.96	87-95			
36-40	0.82	0.88	0.91	0.82	0.88	0.91	96-104			
41-45	0.71	0.82	0.87	0.71	0.82	0.87	105-113			
46-50	0.58	0.75	0.82	0.58	0.75	0.82	114-122			
51-55	0.41	0.67	0.76	0.41	0.67	0.76	123-131			
56-60	_	0.58	0.71	_	0.58	0.71	132-140			
61-70	_	0.33	0.58	-	0.33	0.58	141-158			
71-80	-	-	0.41	-	_	0.41	159-176			

⁽A) Fuses and Fixed-Trip Circuit Breakers. The standard ampere ratings for fuses and inverse time circuit breakers shall be considered:

TUDIO T.L.	impedance Da		use munsionine	15
KVA	%R	%X	%Z	X/R
3.0	3.7600	1.0000	3.8907	0.265
6.0	2.7200	1.7200	3.2182	0.632
9.0	2.3100	1.1600	2.5849	0.502
15.0	2.1000	1.8200	2.7789	0.867
30.0	0.8876	1.3312	1.6000	1.5
45.0	0.9429	1.4145	1.7000	1.5
75.0	0.8876	1.3312	1.6000	1.5
112.5	0.5547	0.8321	1.0000	1.5
150.0	0.6657	0.9985	1.2000	1.5
225.0	0.6657	0.9985	1.2000	1.5
300.0	0.6657	0.9985	1.2000	1.5
500.0	0.7211	1.0816	1.3000	1.5
750.0	0.6317	3.4425	3.5000	5.45
1000.0	0.6048	3.4474	3.5000	5.70
1500.0	0.5617	3.4546	3.5000	6.15
2000.0	0.7457	4.9441	5.0000	6.63
2500.0	0.7457	4.9441	5.0000	6.63

Table 1.2. Impedance Data for Three Phase Transformers

Note: UL Listed transformers 25KVA and greater have a $\pm 10\%$ tolerance on their nameplate impedance.

"C" Values for Conductors and Busway

	Table 6.	" C" Va	lues for	Conductors	and	Busway
--	----------	---------	----------	------------	-----	--------

Coppe	er														
AWG	Three S	ingle Cond	uctors				Three-Conductor Cable								
or	Conduit						Conduit								
kcmil	Steel			Nonmag	gnetic		Steel			Nonmag	Inetic				
100 A	600V	5KV	15KV	600V	5KV	15KV	600V	5KV	15KV	600V	5KV	15KV			
14	389	389	389	389	389	389	389	389	389	389	389	389			
12	617	617	617	617	617	617	617	617	617	617	617	617			
10	981	981	981	981	981	981	981	981	981	981	981	981			
8	1557	1551	1557	1558	1555	1558	1559	1557	1559	1559	1558	1559			
6	2425	2406	2389	2430	2417	2406	2431	2424	2414	2433	2428	2420			
4	3806	3750	3695	3825	3789	3752	3830	3811	3778	3837	3823	3798			
3	4760	4760	4760	4802	4802	4802	4760	4790	4760	4802	4802	4802			
2	5906	5736	5574	6044	5926	5809	5989	5929	5827	6087	6022	5957			
1	7292	7029	6758	7493	7306	7108	7454	7364	7188	7579	7507	7364			
1/0	8924	8543	7973	9317	9033	8590	9209	9086	8707	9472	9372	9052			
2/0	10755	10061	9389	11423	10877	10318	11244	11045	10500	11703	11528	11052			
3/0	12843	11804	11021	13923	13048	12360	13656	13333	12613	14410	14118	13461			
4/0	15082	13605	12542	16673	15351	14347	16391	15890	14813	17482	17019	16012			
250	16483	14924	13643	18593	17120	15865	18310	17850	16465	19779	19352	18001			
300	18176	16292	14768	20867	18975	17408	20617	20051	18318	22524	21938	20163			
350	19703	17385	15678	22736	20526	18672	19557	21914	19821	22736	24126	21982			
400	20565	18235	16365	24296	21786	19731	24253	23371	21042	26915	26044	23517			
500	22185	19172	17492	26706	23277	21329	26980	25449	23125	30028	28712	25916			
600	22965	20567	47962	28033	25203	22097	28752	27974	24896	32236	31258	27766			
750	24136	21386	18888	28303	25430	22690	31050	30024	26932	32404	31338	28303			
1000	25278	22539	19923	31490	28083	24887	33864	32688	29320	37197	35748	31959			

			Conductors							Direct-Current Resistance at 75°C (167°F)					
			S	tranding			0	verall			Copper				
Size	A	rea		Diar	neter	Dian	neter	A	rea	Unc	oated	Cos	ited	Alun	ninum
(AWG or kcmil)	mm ²	Circular mils	Quantity	mm	in.	mm	in.	mm ²	in.2	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT
14 14	2.08 2.08	4110 4110	1 7	0.62	0.024	1.63 1.85	0.064 0.073	2.08 2.68	0.003 0.004	10.1 10.3	3.07 3.14	10.4 10.7	3.19 3.26	16.6 16.9	5.06 5.17
12 12	3.31 3.31	6530 6530	1 7	0.78	0.030	2.05 2.32	0.081 0.092	3.31 4.25	0.005	6.34 6.50	1.93 1.98	6.57 6.73	2.01 2.05	10.45 10.69	3.18 3.25
10 10	5.261 5.261	10380 10380	1 7	0.98	0.038	2.588 2.95	0.102	5.26 6.76	0.008 0.011	3.984 4.070	1.21 1.24	4.148 4.226	1.26 1.29	6.561 6.679	2.00 2.04
8	8.367 8.367	16510 16510	1 7	1.23	0.049	3.264 3.71	0.128 0.146	8.37 10.76	0.013 0.017	2.506 2.551	0.764 0.778	2.579 2.653	0.786 0.809	4.125 4.204	1.26 1.28
6 4 3 2 1	13.30 21.15 26.67 33.62 42.41	26240 41740 52620 66360 83690	7 7 7 7 19	1.56 1.96 2.20 2.47 1.69	0.061 0.077 0.087 0.097 0.066	4.67 5.89 6.60 7.42 8.43	0.184 0.232 0.260 0.292 0.332	17.09 27.19 34.28 43.23 55.80	0.027 0.042 0.053 0.067 0.087	1.608 1.010 0.802 0.634 0.505	0.491 0.308 0.245 0.194 0.154	1.671 1.053 0.833 0.661 0.524	0.510 0.321 0.254 0.201 0.160	2.652 1.666 1.320 1.045 0.829	0.808 0.508 0.403 0.319 0.253
1/0 2/0 3/0 4/0	53.49 67.43 85.01 107.2	105600 133100 167800 211600	19 19 19 19	1.89 2.13 2.39 2.68	0.074 0.084 0.094 0.106	9.45 10.62 11.94 13.41	0.372 0.418 0.470 0.528	70.41 88.74 111.9 141.1	0.109 0.137 0.173 0.219	0.399 0.3170 0.2512 0.1996	0.122 0.0967 0.0766 0.0608	0.415 0.329 0.2610 0.2050	0.127 0.101 0.0797 0.0626	0.660 0.523 0.413 0.328	0.201 0.159 0.126 0.100
250 300 350	127 152 177	Ξ	37 37 37	2.09 2.29 2.47	0.082 0.090 0.097	14.61 16.00 17.30	0.575 0.630 0.681	168 201 235	0.260 0.312 0.364	0.1687 0.1409 0.1205	0.0515 0.0429 0.0367	0.1753 0.1463 0.1252	0.0535 0.0446 0.0382	0.2778 0.2318 0.1984	0.0847 0.0707 0.0605
400 500 600	203 253 304	=	37 37 61	2.64 2.95 2.52	0.104 0.116 0.099	18.49 20.65 22.68	0.728 0.813 0.893	268 336 404	0.416 0.519 0.626	0.1053 0.0845 0.0704	0.0321 0.0258 0.0214	0.1084 0.0869 0.0732	0.0331 0.0265 0.0223	0.1737 0.1391 0.1159	0.0529 0.0424 0.0353
700 750 800	355 380 405	=	61 61 61	2.72 2.82 2.91	0.107 0.111 0.114	24.49 25.35 26.16	0.964 0.998 1.030	471 505 538	0.730 0.782 0.834	0.0603 0.0563 0.0528	0.0184 0.0171 0.0161	0.0622 0.0579 0.0544	0.0189 0.0176 0.0166	0.0994 0.0927 0.0868	0.0303 0.0282 0.0265
900 1000 1250	456 507 633	Ξ	61 61 91	3.09 3.25 2.98	0.122 0.128 0.117	27.79 29.26 32.74	1.094 1.152 1.289	606 673 842	0.940 1.042 1.305	0.0470 0.0423 0.0338	0.0143 0.0129 0.0103	0.0481 0.0434 0.0347	0.0147 0.0132 0.0106	0.0770 0.0695 0.0554	0.0235 0.0212 0.0169
1500 1750 2000 1	760 887 013	Ξ	91 127 127	3.26 2.98 3.19	0.128 0.117 0.126	35.86 38.76 41.45	1.412 1.526 1.632	1011 1180 1349	1.566 1.829 2.092	0.02814 0.02410 0.02109	0.00858 0.00735 0.00643	0.02814 0.02410 0.02109	0.00883 0.00756 0.00662	0.0464 0.0397 0.0348	0.0141 0.0121 0.0106

Notes:

1. These resistance values are valid **only** for the parameters as given. Using conductors having coated strands, different stranding type, and, especially, other temperatures changes the resistance. 2. Formula for temperature change: $R_2 = R_1 [1 + \alpha (T_2 - 75)]$ where $\alpha_{ew} = 0.00323$, $\alpha_{AL} = 0.00330$ at 75°C.

Table 9	Alternating-Current	Resistance and	Reactance	for 600-Volt	Cables, 3-Pha	ise, 60 Hz,
75°C (10	67°F) - Three Single	Conductors in	Conduit			

								Ohms to Ohms to	Neutral	per Kilom per 1000 l	eter				
	Alterr Re X _L (Reactance) for All Wires Co			Alternating-Current Resistance for Uncoated Conner Wires			rnating-Cur Resistance fo uminum Wi	rrent or res	Effective Z at 0.85 <i>PF</i> for Uncoated Copper Wires			Effective Z at 0.85 PF for Aluminum Wires			Size
Size (AWG or kcmil)	PVC, Aluminum Conduits	Steel Conduit	PVC Conduit	Aluminum Conduit	Steel Conduit	PVC Conduit	Aluminum Conduit	Steel Conduit	PVC Conduit	Aluminum Conduit	Steel Conduit	PVC Conduit	Aluminum Conduit	Steel Conduit	(AWG or kcmil)
14	0.190 0.058	0.240 0.073	10.2 3.1	10.2 3.1	10.2 3.1	_		_	8.9 2.7	8.9 2.7	8.9 2.7		_		14
12	0.177	0.223	6.6 2.0	6.6 2.0	6.6 2.0	10.5 3.2	10.5 3.2	10.5 3.2	5.6 1.7	5.6 1.7	5.6 1.7	9.2 2.8	9.2 2.8	9.2 2.8	12
10	0.164	0.207	3.9 1.2	3.9 1.2	3.9 1.2	6.6 2.0	6.6 2.0	6.6 2.0	3.6 1.1	3.6 1.1	3.6 1.1	5.9 1.8	5.9 1.8	5.9 1.8	10
8	0.171 0.052	0.213	2.56 0.78	2.56 0.78	2.56 0.78	4.3 1.3	4.3 1.3	43 13	2.26 0.69	2.26 0.69	2.30 0.70	3.6 1.1	3.6 1.1	3.6 1.1	8
6	0.167 0.051	0.210 0.064	1.61 0.49	1.61 0.49	1.61 0.49	2.66 0.81	2.66 0.81	2.66 0.81	1.44 0.44	1.48 0.45	1.48 0.45	2.33 0.71	2.36 0.72	2.36 0.72	6
4	0.157 0.048	0.197 0.060	1.02 0.31	1.02 0.31	1.02 0.31	1.67 0.51	1.67 0.51	1.67 0.51	0.95 0.29	0.95 0.29	0.98 0.30	1.51 0.46	1.51 0.46	1.51 0.46	4
3	0.154 0.047	0.194 0.059	0.82 0.25	0.82 0.25	0.82 0.25	1.31 0.40	1.35 0.41	1.31 0.40	0.75 0.23	0.79 0.24	0.79 0.24	1.21 0.37	1.21 0.37	1.21 0.37	3
2	0.148 0.045	0.187 0.057	0.62 0.19	0.66 0.20	0.66 0.20	1.05 0.32	1.05 0.32	1.05 0.32	0.62 0.19	0.62 0.19	0.66 0.20	0.98 0.30	0.98 0.30	0.98 0.30	2
1	0.151 0.046	0.187 0.057	0.49 0.15	0.52 0.16	0.52 0.16	0.82 0.25	0.85 0.26	0.82	0.52 0.16	0.52 0.16	0.52 0.16	0.79 0.24	0.79 0.24	0.82 0.25	1
1/0	0.144 0.044	0.180 0.055	0.39 0.12	0.43 0.13	0.39 0.12	0.66 0.20	0.69 0.21	0.66 0.20	0.43 0.13	0.43 0.13	0.43 0.13	0.62 0.19	0.66 0.20	0.66 0.20	1/0
2/0	0.141 0.043	0.177 0.054	0.33 0.10	0.33 0.10	0.33 0.10	0.52 0.16	0.52 0.16	0.52 0.16	0.36 0.11	0.36 0.11	0.36 0.11	0.52 0.16	0.52 0.16	0.52 0.16	2/0
3/0	0.138 0.042	0.171 0.052	0.253 0.077	0.269 0.082	0.259 0.079	0.43 0.13	0.43 0.13	0.43 0.13	0.289 0.088	0.302 0.092	0.308 0.094	0.43 0.13	0.43 0.13	0.46 0.14	3/0
4/0	0.135 0.041	0.167 0.051	0.203	0.220 0.067	0.207	0.33 0.10	0.36 0.11	0.33 0.10	0.243 0.074	0.256 0.078	0.262	0.36 0.11	0.36	0.36 0.11	4/0
250	0.135 0.041	0.171 0.052	0.171 0.052	0.187 0.057	0.177 0.054	0.279 0.085	0.295 0.090	0.282 0.086	0.217	0.230 0.070	0.240 0.073	0.308 0.094	0.322 0.098	0.33 0.10	250
300	0.135 0.041	0.167 0.051	0.144 0.044	0.161 0.049	0.148 0.045	0.233 0.071	0.249 0.076	0.236 0.072	0.194 0.059	0.207 0.063	0.213 0.065	0.269 0.082	0.282 0.086	0.289 0.088	300
350	0.131 0.040	0.164 0.050	0.125 0.038	0.141 0.043	0.128 0.039	0.200 0.061	0.217	0.207	0.174 0.053	0.190 0.058	0.197	0.240 0.073	0.253 0.077	0.262 0.080	350
400	0.131 0.040	0.161 0.049	0.108 0.033	0.125 0.038	0.115 0.035	0.177 0.054	0.194 0.059	0.180 0.055	0.161 0.049	0.174 0.053	0.184	0.217 0.066	0.233 0.071	0.240 0.073	400
500	0.128	0.157	0.089	0.105	0.095	0.141	0.157	0.148	0.141	0.157	0.164	0.187	0.200	0.210	500
600	0.128 0.039	0.157 0.048	0.075	0.092 0.028	0.082	0.118	0.135 0.041	0.125 0.038	0.131 0.040	0.144 0.044	0.154 0.047	0.167	0.180	0.190	600
750	0.125 0.038	0.157 0.048	0.062 0.019	0.079 0.024	0.069 0.021	0.095	0.112 0.034	0.102 0.031	0.118	0.131 0.040	0.141 0.043	0.148	0.161 0.049	0.171 0.052	750
1000	0.121 0.037	0.151 0.046	0.049 0.015	0.062 0.019	0.059 0.018	0.075 0.023	0.089 0.027	0.082 0.025	0.105	0.118 0.036	0.131 0.040	0.128 0.039	0.138 0.042	0.151 0.046	1000

Notes: 1.... These resistance values are valid only at 75°C (167°F) and for the parameters as given, but are representative for 600-volt wire types operating at 60 Hz.

2. Effective Z is defined as $R \cos(\theta) + X \sin(\theta)$, where θ is the power factor angle of the circuit. Multiplying current by effective impedance gives a good approximation for line-to-neutral voltage drop. Effective impedance values shown in this table are valid only at 0.85 power factor. For another circuit power factor (*PF*), effective impedance (*Ze*) can be calculated from *R* and *X_L* values given in this table as follows: $Ze = R \times PF + X_L \sin[\arccos(PF)]$.