ECET 4520 - Fall 2017 Lab Assignment #01

Name:

General Instructions: This assignment is to be completed individually.

All answers/work required for each problem should be <u>neatly</u> written in the space provided.

This assignment is due by the beginning of class (9³⁰am) on Aug. 31st. Submissions after the deadline will be considered "late" as specified within the course-policy handouts.

ARTICLE 100: As per the NEC, define the following terms:

- 1. Ampacity
- 2. Continuous Load

3. Ground Fault Circuit Interrupter

4. Outlet

ARTICLE 210: Complete each of the following statements and specify the exact article/sub-section or table number within the NEC that you utilized to obtain the information.

- 5. Special Purpose Branch Circuits that supply motors, motor circuits, and controllers are covered Table: _____ by Article # _____.
- 6. The standard ratings for other than individual branch circuits are:

- The nominal voltage of a branch circuit in a dwelling unit that supplies cord-and-plug connected loads rated 1440VA or less shall not exceed ______ volts. A/S.S.: ______
- Ground Fault Circuit Interruption protection for personnel is required in "Other than Dwelling Units" for all 125V, 1Φ, 15A and 20A receptacles located in:
- 9. Conductors used for General Branch Circuits rated not more than 600V shall have an ampacity (before any adjustments are applied) that is not less than ______% of the non-continuous loads plus ______% of the continuous loads.
- 10. In terms of permissible loads on 15A and 20A branch circuits, the total rating of utilization equipment fastened in-place (other than luminaires) shall not exceed ______% of the circuit's rating where lighting units and/or cord-and-plug-connected utilization equipment are also supplied. A/S.S.: ______
- **11.** The minimum conductor size for copper circuit wires used in a 30A branch circuit is #_____.

Table:

ARTICLE 220: Complete each of the following statements and specify the exact article/sub-section or table number within the NEC that you utilized to obtain the information.

12. Specify the minimum unit load that can be used when calculating the general lighting load in the following occupancies:

 Dwelling Units
 VA/m² or
 VA/ft²

 Commercial Garages
 VA/m² or
 VA/ft²

 Halls/Corridors of non-dwelling units
 VA/m² or
 VA/ft²

Table:

13.	With respect to receptacle outlets, the minimum load for each outlet used for general-use		
	receptacles shall be calculated at not-less-than		VA for each single or multi-receptacle
	n one yoke or VA per receptacle for multi-receptacle outlets comprised of four or		
	more receptacles.		A/S.S.:

14. The Lighting Load demand factors for a dwelling unit are:

_____% for the first 3,000 VA

% for 3,001VA to 120,000 VA

% for the remainder over 120,000VA

Table:

15. The demand factors for non-dwelling receptacle loads are:

_____% for the first 10kVA

_____% for the remainder over 10kVA Table: _____

ARTICLE 240: Complete each of the following statements and specify the exact article/sub-section or table number within the NEC that you utilized to obtain the information.

16. Given the list of ampere ratings shown below, _____ A is <u>not</u> considered a standard ampere rating for fuses or inverse-time circuit breakers.

15A, 35A, 50A, 75A, 100A, 110A, 150A, 175A, 200A A/S.S.:

17. Overcurrent protection shall be provided for each ungrounded circuit conductor and shall be located ______

_____, except as specified... A/S.S.:

ARTICLE 310: Complete each of the following statements and specify the exact article/sub-section or table number within the NEC that you utilized to obtain the information.

18. When utilized in raceways, conductors of size # _____ (AWG) and larger shall be stranded.
A/S.S.: _____

19. Conductors of size # _____(AWG) and larger shall be permitted to be connected in parallel.

A/S.S.:

20. Specify the temperature rating and application provisions for the following cable types:

THHN – Temp Rating ______ °C Application Provisions ______

THHW – Temp Rating _____ °C Application Provisions _____

RHW-2 – Temp Rating _____ °CApplication Provisions _____

Table:

21. Utilize Table 310.15(B)(16) or 310.15(B)(17) along with 310.15(B)(2)(a) and 310.15(B)(3)(a) as needed to determine the <u>ampacity</u> (per conductor) for the following conductors/conditions:

a) A single copper #2 AWG, 600V, THHN, conductor rated at 90°C in open air with an ambient temperature of 50°C.
 Ampacity = _____A

b) Two, aluminum 3-conductor, 300kcm, 600V, THHN cables, each rated at 75°C, located in the same raceway with an ambient temperature of 38°C, if all six conductors are considered "current-carrying". Ampacity = _____ A

OTHER CALCULATIONS: Complete each of the following tasks:

22. Determine the cross-sectional area in circular mils of a solid, rectangular conductor having cross-sectional dimensions: $\frac{3}{8}$ "x 1 $\frac{3}{4}$ ".

23. Determine the DC resistance of a 400-foot long section of 2/0 AWG, copper conductor at 25°C. (Note – refer to NEC Table 8 for this task)

24. If a 208V, 3Φ source is used to supply a delta-connected load having the per-phase impedance $Z_{\Delta}=18+j4\Omega$, determine the magnitude of the line currents and with the total complex power provided by the source to the load. Also, completely specify/characterize the power factor of the load.

25. If the load in problem #24 is reconfigured as a wye-connected load having the per-phase impedance $Z_Y=18+j4\Omega$, determine the magnitude of the line currents along with the total complex power provided by the source to the load.