

National Electrical Manufacturers Association

- NEMA*
- Trade association whose 400+ member companies manufacture products used in the generation, transmission, distribution, control, and end-use of electricity
- Provides a forum for the development of technical <u>standards</u> that relate to the design, installation and use of electrical equipment

* - Information about NEMA and NEMA Standards found at: www.NEMA.org

Standards

Standards:

- Enable customers to select from a range of safe, effective, and compatible electrical products
- Promote fair competition by defining products and processes, leading to economies in production and elimination of misunderstanding
- Promote the manufacturing of products that are available globally, delivered locally, competitively priced, able to perform predictably, and are safe and environmentally sound

NEMA Standards

NEMA standards relating to motor control include:

Industrial Control and Systems

- ICS 1 General Requirements
- ICS 2 Contactors and Overload Relays
- ICS 5 Control Circuit and Pilot Devices
- ICS 7 Adjustable Speed Drives
- ICS 19 Diagrams, Designations & Symbols

MG 1 – General Purpose Industrial AC Small & Medium Squirrel-Cage Induction Motors

Motors must adhere to a uniform set of standards provided by NEMA in order to be called a "NEMA Rated Motor"

The standards cover all aspects of the motor's design, testing and operation including:

- the frame/mounting dimensions
- the motor's ratings (voltage, current, frequency, speed, horsepower...)
- the locked-rotor current & torque
- the operating efficiency & temperature

Nameplate Information

The nameplate typically includes the:

- Manufacturer's Name and Logo
- Frame Designation and Type
- Rated Horsepower
- Rated Voltage
- Rated Frequency
- Rated Full Load Amps
- Number of Phases
- Rated Speed

The nameplate typically includes the:

- Operational Efficiency
- Operational Power Factor
- Design Letter
- Rated Ambient Temperature
- Service Factor
- Duty Cycle
- (Locked-Rotor kVA) Code Letter
- Insulation Class Letter

Induction Motor Rating Example

Example – Determine the <u>locked-rotor (starting) current</u> for the 150Hp induction motor shown below:

Key Nameplate Data – 150Hp, 460V, 163A, Design B

Table 31 \rightarrow 150Hp / 230V / B \rightarrow 2170 L-R amps

Note – L-R amps are inversely proportional to voltage

: <u>**L-R Amps**</u> = $2170 \cdot \frac{230}{460} = 1085A$

Induction Motor Rating Example

Example – Determine the <u>locked-rotor (starting) current</u> for the 150Hp induction motor shown below:

Key Nameplate Data – 150Hp, 460V, 163A, Design B

Table 31 \rightarrow 150Hp / 230V / B \rightarrow 2170 L-R amps

Note - L-R amps are inversely proportional to voltage

: **L-R Amps =** 1085 A = 6.67 x 163 A

The L-R amps are <u>6²/₃x greater</u> than the FLA!

Dual-Voltage Induction Motors

Some 1Φ and 3Φ induction motors have <u>dual-voltage ratings</u>, the selection of which is based on the wiring configuration of the motor.

The rated voltages of both 1Φ and 3Φ , dual-voltage motors typically have a 1:2 ratio.

Dual-Voltage Induction Motors

Dual-voltage motors with a <u>1:2</u> voltage ratio contain two sets of windings that can be wired together in either a parallel (low-V) or a series (high-V) format.

Motors with a 1:2 rated-voltage ratio will have an inverse rated-current ratio of 2:1.

The other ratings of the 1:2 motor are independent of the wiring format (i.e. -1:1) provided that the appropriate rated voltages are applied.

