

Transformers

(Part A) Ideal Transformers

ECET 3500 - Survey of Electric Machines

Simple AC-Supplied Magnetic Circuit

If an AC source is connected to a coil, a magnetic flux, Φ_M , will be created by that coil, the value of which may be determined from the following relationship :

$$v(t) = \widetilde{E}_p = N_p \cdot \frac{d\Phi_M(t)}{dt}$$
 (Faraday's Law)

where N_p is the number of turns of the primary (sourced) coil.

If the magnetization current:

$$i_m(t) = \frac{\sqrt{2} \cdot V}{\omega \cdot L} \cdot \cos(\omega \cdot t - 90^\circ)$$

is compared to the **flux** formed by the coil:

$$\Phi_{M}(t) = \frac{\sqrt{2} \cdot V}{\omega \cdot N_{p}} \cdot \cos(\omega \cdot t - 90^{\circ})$$

Simple AC-Supplied Magnetic Circuit

It can be determined that:

$$\frac{d\Phi_M(t)}{dt} = \frac{L}{N_p} \cdot \frac{di_m(t)}{dt}$$

This result may be substituted into the **Faraday's Law** equation to provide the relationship:

$$v(t) = N_p \cdot \frac{d\Phi_M(t)}{dt}$$
$$= L \cdot \frac{di_M(t)}{dt}$$

Simple AC-Supplied Magnetic Circuit

Thus, an AC-supplied coil that is wrapped around a finite-permeability magnetic core will function as an <u>inductor</u>, whose voltage-current relationship is defined by:

$$v(t) = L \cdot \frac{di_M(t)}{dt}$$

and whose **inductance** is a function of the number of turns in the coil, N_p , and the reluctance of the field-path, \Re :

$$L = \frac{N_p^2}{\Re}$$

Turns-Ratio

The ratio relationship, referred to as the **<u>turns ratio</u>** (*a*):

$$a = \frac{\widetilde{E}_p}{\widetilde{E}_s} = \frac{N_p}{N_s}$$

defines the basic operation of an ideal transformer in terms of the primary and secondary voltages.

Determining the Polarity Relationship

If a load is connected to the second winding, then a **secondary current** \tilde{I}_s will flow out of the secondary winding and through the load due to the induced voltage.

Based on Lenz's Law, the **polarity of the voltage** must be such that <u>the resultant coil-current will create a counter-flux</u> in the core that opposes the original flux.

Secondary Current Effects But, the existence of a counter-flux produced by the current that is flowing in the second coil would tend to decrease the overall flux within the magnetic core, in-turn decreasing the total flux passing through the primary coil. $\Phi_{Net} = \Phi_M - \Phi_S$ $\int_{V_{BURE}} \int_{U_{E_B}} \int_{U_{E_$

Secondary Current Effects

Thus, the existence of the secondary current's counter-flux, Φ_s , requires that a **primary current**, \tilde{I}_p , be drawn into the primary winding that will create an additional flux component, Φ_p , within the core that is equal in magnitude but opposite in direction compared to the secondary flux Φ_s .

Polarity Relationship

The **polarity relationship** between the primary and secondary voltages depends on the direction that the coils are wrapped around the magnetic core.

The "**Dot Convention**" is often used to provide the polarity relationship for a specific transformer.

Ideal Transformer Example Problem Given a transformer that contains windings having 50-turns and 500-turns: If a 200∠0° volt source is connected across the 50-turn winding and a 4Ω load is connected across the 500-turn winding, Determine: • The load voltage, • The load voltage, • The real power consumed by the load, • The real power produced by the source. Image: The real power produced by the source. • The real power produced by the source.

Ideal Transformer Example Problem

Np

If a 200 $\angle 0^\circ$ volt source is connected across the 50-turn winding and a 4 Ω load is connected across the 500-turn winding...

The turns-ratio for the transformer (as connected) is:

$$a = \frac{N_p}{N_s} = \frac{50}{500} = \frac{1}{10}$$

If a 200 $\angle 0^\circ$ volt source is connected across the 50-turn winding and a 4 Ω load is connected across the 500-turn winding...

Since the source is directly connected to the primary winding, the **primary voltage** \tilde{E}_p is equal to the source voltage, thus:

$$\widetilde{E}_p = 200 \angle 0^\circ$$

And, since the load is connected directly to the secondary winding, the load voltage and current are equal to \tilde{E}_s and \tilde{I}_s respectively.

Ideal Transformer Example Problem

If a 200 $\angle 0^\circ$ volt source is connected across the 50-turn winding and a 4 Ω load is connected across the 500-turn winding...

The secondary (load) voltage \tilde{E}_s can be determined from the equation:

$$\widetilde{V}_{load} = \widetilde{E}_s = \frac{\widetilde{E}_p}{a} = \frac{200\angle 0^\circ}{\frac{1}{10}} = 2,000\angle 0^\circ \text{ volts}$$

 $200 \angle 0^{\circ} \bigcirc \overbrace{\tilde{E}_{p}}^{\tilde{I}_{p}} \overset{a = \frac{1}{10} \quad \tilde{I}_{s}}_{N_{p}} \underbrace{\tilde{E}_{s}}_{N_{s}} 4\Omega$

If a 200 $\angle 0^\circ$ volt source is connected across the 50-turn winding and a 4 Ω load is connected across the 500-turn winding...

The primary (source) current \tilde{I}_p can be determined from the equation:

$$\widetilde{I}_{source} = \widetilde{I}_p = \frac{\widetilde{I}_s}{a} = \frac{500 \angle 0^\circ}{\frac{1}{10}} = 5,000 \angle 0^\circ \text{ amps}$$

A load impedance $Z_{load} = 0.1\Omega$ requires a supply voltage of $100 \angle 0^\circ$ volts.

Since the load is far from the actual voltage source, a long pair of wires are used to connect the load to the source.

If the wires have an overall resistance of $R_{wire} = 1\Omega$,

Determine the required **source voltage** and the overall **system efficiency**.

"Power System" Example Problem

A load impedance $Z_{load} = 0.1\Omega$ requires a supply voltage of $100 \angle 0^\circ$ volts.

A long pair of wires are still used to connect the load to the source, but this time **ideal transformers** are placed at both the source-end and the load-end of the wires, the turns-ratios of which are $\frac{1}{100}$ and $\frac{100}{1}$ respectively.

If the wires have an overall resistance of $R_{wire} = 1\Omega$,

Determine the required source voltage and the overall system efficiency.

Input Impedance

Given an ideal transformer with a source connected across the primary winding and a load connected across the secondary winding...

Determine the overall impedance "seen" by the source. (I.e. – the **input impedance** of the ideal transformer)

Input Impedance

The input impedance of an ideal transformer may be defined as:

$$Z_{in} = \frac{\widetilde{E}_p}{\widetilde{I}_p}$$

If we substitute the following relations into the equation:

$$\widetilde{E}_p = a \cdot \widetilde{E}_s \qquad \qquad \widetilde{I}_p = \frac{1}{a} \cdot \widetilde{I}_s$$

$$\widetilde{V}_{source} \underbrace{\overbrace{I_p}^{p} N_p N_s}_{\text{local Transformer}} \widetilde{I_s} = a$$

$$a = \frac{N_p}{N_s}$$

$$Z_{Load} \qquad \frac{\widetilde{E}_p}{\widetilde{E}_s} = a$$

$$\widetilde{I_p}_s = \frac{1}{a}$$

Input Impedance

Then the **input impedance** may be re-written as:

$$Z_{in} = \frac{a \cdot \widetilde{E}_s}{\frac{1}{a} \cdot \widetilde{I}_s} = a^2 \cdot \frac{\widetilde{E}_s}{\widetilde{I}_s}$$

since \widetilde{E}_s and \widetilde{I}_s equal the load voltage and current respectively:

Input Impedance

If <u>expressed in terms of the load impedance</u>, the **input impedance** of the ideal transformer is:

$$Z_{in} = a^2 \cdot \frac{\widetilde{E}_s}{\widetilde{I}_s} = a^2 \cdot Z_{Load}$$

the turns-ratio squared times the connected load impedance:

$$Z_{in} = a^2 \cdot Z_{Load} = Z'_{Load}$$

$$\widetilde{Y}_{source} \underbrace{\overbrace{E_p}^{T} N_s N_s}_{\text{Ideal Transformer}} \widetilde{I_s} = a$$

$$a = \frac{N_p}{N_s}$$

$$Z_{Load} \qquad \frac{\widetilde{E_p}}{\widetilde{E_s}} = a$$

$$\widetilde{I_s} = \frac{1}{a}$$

Given the following circuit that contains a **120V–48V** ideal transformer:

Assuming that the transformer is configured for **step-down** operation,

Determine:

- The source current,
- The load voltage,
- The complex power produced by the source, and
- The total complex power consumed by Z_{L1} and Z_{L2} .

Given the following circuit that contains a **120V–48V** ideal transformer:

Since Z_{LI} is connected in parallel with Z_{L2} , the two impedances can be replaced by a single **equivalent impedance** Z_{Leq} :

$$Z_{Leq} = \left(\frac{1}{Z_{L1}} + \frac{1}{Z_{L2}}\right)^{-1} = \left(\frac{1}{20 - j20} + \frac{1}{40 + j30}\right)^{-1} = (22.2 - j7.03) \Omega$$

Note that the voltage across Z_{Leq} equals the original load voltage V_{load} .

Ideal Transformer Example Problem Given the following circuit that contains a 120V-48V ideal transformer: $\underbrace{\sqrt{\frac{r}{12020^{\circ}}} \underbrace{\overline{r}_{s}} \underbrace{\overline{r}_$

Thus, to facilitate the analysis of the circuit, the ideal transformer and load combination will initially be replaced by an overall equivalent impedance that equals the **input impedance** seen looking into the transformer's primary terminals:

$$Z_{in} = Z'_{Leq} = a^2 \cdot Z_{Leq} = 2.5^2 \cdot (22.2 - j7.03) = (138.5 - j43.9)$$

