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Transformers
(Part A)

Ideal Transformers

ECET 3500 – Survey of Electric Machines

An ideal transformer is a two-port device that receives an AC 
voltage,     , at one magnitude and transforms it into a new AC 
voltage,    , at a different magnitude.

The port (side) to which the voltage is applied is called the 
“primary” side and the port (side) at which the transformed 
voltage appears is called the “secondary” side.

pE
~

sE
~

Introduction to Ideal Transformers

ZloadV~source E~p E~sTransformer

Secondary SidePrimary Side



2

The turns-ratio of the transformer, a, defines the ratio of the two 
voltage magnitudes:

Note that an ideal transformer does not change the phase angle 
of the voltage; it only transforms the magnitude.
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Ratio of Voltages

Since Pin must equal Pout for an ideal (lossless) transformer, the 
magnitudes of the primary and secondary currents flowing 
into and out of the transformer must have an inverse ratio
compared to the voltages:
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An ideal transformer’s theoretical operation is based on the 
electro-magnetic interactions that occur between two coils that 
are coupled together by a magnetic core.

Thus, the analysis of its theoretical operation will begin with the 
analysis of a simple, AC-supplied magnetic circuit.
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Underlying Theory

Simple AC-Supplied Magnetic Circuit

If an AC source is connected to a coil, a magnetic flux,  , will 
be created by that coil, the value of which may be determined 
from the following relationship :

(Faraday’s Law)

where Np is the number of turns of the primary (sourced) coil.
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Thus, given the voltage:

the magnetic flux can be solved as:
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The resultant flux:

may be rewritten as:

since sine is equivalent to cosine that is phase-shifted by –90°.
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Thus, the sinusoidally-supplied coil 
will induce a sinusoidally-varying 
flux that out of phase from the 
voltage by –90°:
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If the core has finite permeability, μ, 
then a magnetization current, im, 
will be drawn into the coil from 
the source, as defined by the 
relationship:

where     is the reluctance of the 
field path (core).
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Additionally, if the core material is 
linear (μr = constant), then the 
magnetization current will be 
proportional to the flux:

Note – im(t ) is not the primary current that was defined within the initial 
introduction to “ideal transformers”.  Instead, im(t ) is a non-ideal 
(loss) component that occurs within a transformer due to a finite core 
permeability.
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Simple AC-Supplied Magnetic Circuit

If the solution for flux, M, is 
substituted into the current 
equation, then the magnetization 
current, im, can be expressed in 
terms of the original source 
voltage’s parameters:
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The resultant magnetization current:

can be rewritten as:
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If we define a new variable, L, such 
that:

we can substitute L into the 
expression for current:
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Looking at the overall response of an 
AC-supplied coil wrapped around a 
finite-permeability core; 

the resultant current is out of phase 
with the supply voltage by –90°.
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Additionally, the voltage and current magnitudes have the 
proportionality relationship:
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is compared to the flux formed by 
the coil:
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It can be determined that:

This result may be substituted into 
the Faraday’s Law equation to 
provide the relationship:
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Thus, an AC-supplied coil that is 
wrapped around a finite-permeability 
magnetic core will function as an 
inductor, whose voltage-current 
relationship is defined by: 
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Note – if the core is assumed to be 
infinitely-permeable (μ∞),

then the reluctance of the core 
will be zero (0),

and the inductance will be 
infinite (L∞).

Thus, the coil will draw zero 
magnetizing current (im0). 
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No magnetization 
current is required to 
create a flux within an 
infinitely-permeable 

magnetic core.

Given the previously defined magnetic circuit… 

What would happen if a second coil is coupled to (wrapped around) 
the magnetic core?
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If the magnetic core is assumed to be ideal, then the total flux 
created by the sourced coil will pass through the second coil.

Since a time-varying flux passes through the second coil, a voltage
will be induced across that coil, also defined by:
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An ideal magnetic core 
is both lossless and 

infinitely-permeable.
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If the total flux passes through both coils, then the rate of change 
of the flux,        , passing through the coils must be the same.

The following relationship may be derived by solving for          in 
both coils and equating the results:
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The relationship between the two coil voltages is typically 
expressed as a ratio of the voltages, which equals to the ratio 
of their respective number of turns.

(I.e. – the “turns ratio” of the transformer).
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Voltage Relationship

The ratio relationship, referred to as the turns ratio (a):

defines the basic operation of an ideal transformer in terms of 
the primary and secondary voltages.
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Polarity Relationship & Lenz’s Law 

Note – the polarity of the voltage induced across the second coil 
is based upon both the direction of the flux within the core 
and the direction that the coil is wrapped around the core.

The correct polarity relationship can be determined by applying 
Lenz’s Law, which states:

“Any induced effect will always oppose its source.”
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If a load is connected to the second winding, then a secondary
current will flow out of the secondary winding and through 
the load due to the induced voltage.

Based on Lenz’s Law, the polarity of the voltage must be such 
that the resultant coil-current will create a counter-flux in the 
core that opposes the original flux. 
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Secondary Current Effects

But, the existence of a counter-flux produced by the current that is 
flowing in the second coil would tend to decrease the overall 
flux within the magnetic core, in-turn decreasing the total flux 
passing through the primary coil. 
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Assuming that the source is ideal, this presents a problem because 
Faraday’s Law does not allow for a change in the flux passing 
through the primary coil unless the supply voltage itself 
changes accordingly.
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Thus, the existence of the secondary current’s counter-flux, s,
requires that a primary current,     , be drawn into the primary 
winding that will create an additional flux component, p, 
within the core that is equal in magnitude but opposite in 
direction compared to the secondary flux s. 
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Since the primary and secondary fluxes are equal in magnitude but 
opposite in direction, they will cancel, leaving the net flux in the 
core the same as defined by Faraday’s Law applied to the 
primary winding: 
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Primary/Secondary Current Ratio

Based on the MMF relationship applied to both coils:

the ratio of the primary and secondary currents must be:

in order for their fluxes to cancel.
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Thus, the overall operation of the ideal transformer that supplies 
a single load can be defined by the following set of equations:
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The following equivalent circuit will be used to represent an 
ideal transformer:
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Ideal Transformer Equivalent Circuit
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Primary Winding ≡ the winding that creates the mutually-linked 
flux (I.e. – the sourced winding).

Secondary Winding ≡ the winding across which a voltage is 
induced (I.e. – the load winding).

Note – the primary & secondary winding designations can also be defined in terms of 
power flow direction (I.e. – power into primary and power out of secondary)
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High-Voltage Winding ≡ the winding with the larger voltage magnitude.
(I.e. – the coil with the larger number of turns)

Low-Voltage Winding ≡ the winding with the smaller voltage magnitude.
(I.e. – the coil with the smaller number of turns)

Note – the high-voltage winding will have the larger number of turns while the 
low-voltage winding will have the smaller number of turns.

Ideal Transformer Definitions
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Ideal Transformer Definitions
Step-Up Transformer ≡ a transformer whose voltage increases 

from primary to secondary winding.

Step-Down Transformer ≡ a transformer whose voltage decreases 
from primary to secondary winding.

Notes: A step-up transformer’s turns ratio will be less than one (a < 1).

A step-down transformer’s turns ratio will be greater than one (a > 1).
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The polarity relationship between the primary and secondary 
voltages depends on the direction that the coils are wrapped 
around the magnetic core.

The “Dot Convention” is often used to provide the polarity 
relationship for a specific transformer.

Polarity Relationship
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“Dots” are often included with the equivalent circuit to define the 
polarity relationship between the transformer windings.

1) An applied primary voltage whose voltage-rise points toward the 
primary winding’s dot will induce a secondary voltage whose 
voltage-rise points toward the secondary winding’s dot.

2) A primary current will flow into the dot side of its winding when a 
secondary current flows out of the dot side of its winding. 
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It is important to note that the turns ratio, a, will change 
depending on which of the two windings are utilized as the 
primary winding. 

Turns-Ratio Consideration
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Either winding may be utilized 

as the primary winding.
(I.e. – a transformer’s operation 

does not have a required 
direction of power flow)

For example – Given a transformer with a 200-turn winding and 
a 500-turn winding:

The transformer will have a turns ratio a = 0.4 if the       
200-turn winding is utilized as the primary, or

The transformer will have a turns ratio a = 2.5 if the  
500-turn winding is utilized as the primary. 
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Given a transformer that contains windings having 50-turns and 500-turns:

If a 2000 volt source is connected across the 50-turn winding and 
a 4Ω load is connected across the 500-turn winding,

Determine:  The load voltage,
 The load current,
 The real power consumed by the load,
 The source current, and
 The real power produced by the source.
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If a 2000 volt source is connected across the 50-turn winding and     
a 4Ω load is connected across the 500-turn winding…

The turns-ratio for the transformer (as connected) is:
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If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

Since the source is directly connected to the primary winding, the primary 
voltage ࢖෩ࡱ is equal to the source voltage, thus:

And, since the load is connected directly to the secondary winding, the load 
voltage and current are equal to ࡱ෩࢙ and ࡵ෨࢙ respectively.
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Ideal Transformer Example Problem

 0200
~

pE

Np

Es
~

Ns

Ep
~

Ip
~ Is

~

If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

The secondary (load) voltage ෩࢙ࡱ can be determined from the equation:
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If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

The resultant secondary (load) current ෨࢙ࡵ will be:
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Ideal Transformer Example Problem
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If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

The complex power, Sload , consumed by the load will be:

from which the load’s real power can be determined:
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Ideal Transformer Example Problem
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If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

The primary (source) current ࢖෨ࡵ can be determined from the equation:
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Ideal Transformer Example Problem
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If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

Finally, the complex power, Ssource , produced by the source will be:

from which the source’s real power can be determined:

4Ω2000

10
1a

Ideal Transformer Example Problem

    0000,000,10000,50200
~~ * jIVS sourcesourcesource 

watts000,000,1sourceP



25
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Given a transformer that contains windings having 50 and 500 turns:

If a 2000 volt source is connected across the 50-turn winding and            
a 4Ω load is connected across the 500-turn winding…

 Load Voltage:
 Load Current:
 Load Real Power:
 Source Current:
 Source Real Power:
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Ideal Transformer Example Problem
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A load impedance Zload = 0.1Ω requires a supply voltage of 1000 volts.

Since the load is far from the actual voltage source, a long pair of wires are 
used to connect the load to the source.

If the wires have an overall resistance of Rwire = 1Ω, 

Determine the required source voltage and the overall system efficiency.

1Ω

“Power System” Example Problem
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“Power System” Example Problem
A load impedance Zload = 0.1Ω requires a supply voltage of 1000 volts.

A long pair of wires are still used to connect the load to the source, but this 
time ideal transformers are placed at both the source-end and the load-end 
of the wires, the turns-ratios of which are ૚

૚૙૙
and ૚૙૙

૚
respectively.

If the wires have an overall resistance of Rwire = 1Ω, 

Determine the required source voltage and the overall system efficiency.
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11 a 1

1002 a

1Ω

“Power System” Example Problem
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Input Impedance

Given an ideal transformer with a source connected across the 
primary winding and a load connected across the secondary 
winding…

Determine the overall impedance “seen” by the source.

(I.e. – the input impedance of the ideal transformer) 

sE
~

pE
~

sI
~pI

~

Ideal Transformer
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
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p 1
~

~


Input Impedance

The input impedance of an ideal transformer may be defined as:

If we substitute the following relations into the equation:

sp EaE
~~  sap II

~~ 1 

p

p
in I

E
Z ~
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

sE
~

pE
~
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Ideal Transformer
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~
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Input Impedance

Then the input impedance may be re-written as:

since     and    equal the load voltage and current respectively:sE
~

sI
~

Load
Load

Load
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
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Input Impedance

If expressed in terms of the load impedance, the input impedance of 
the ideal transformer is:

the turns-ratio squared times the connected load impedance:
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Given the following circuit that contains a 120V–48V ideal transformer:

Assuming that the transformer is configured for step-down operation, 

Determine:  The source current,
 The load voltage,
 The complex power produced by the source, and
 The total complex power consumed by ZL1 and ZL2. 

Ideal Transformer Example Problem

0120 sE
~

pE
~

sI
~pI

~

Ideal Transformer

a

sourceV
~

L2ZL1Z

XZ

40 30j

20 20j

75

sourceI
~

loadV
~

Given the following circuit that contains a 120V–48V ideal transformer:

Since the transformer is configured for step-down operation, the primary 
winding is the high-voltage winding and the secondary winding is 
the low-voltage winding.

Thus, the operational turns-ratio of the transformer is:

Ideal Transformer Example Problem

5.2
V48

V120

)S(

)Pri( 
ecRated

Rated

V

V
a

0120 sE
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pE
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~pI

~

Ideal Transformer

sourceV
~

L2ZL1Z

XZ

40 30j

20 20j

75

sourceI
~

loadV
~

5.2a
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Given the following circuit that contains a 120V–48V ideal transformer:

Since ZL1 is connected in parallel with ZL2, the two impedances can be 
replaced by a single equivalent impedance ZLeq:

Note that the voltage across ZLeq equals the original load voltage Vload.

Ideal Transformer Example Problem

ࢗࢋࡸࢆ ൌ
૚
૚ࡸࢆ

൅
૚
૛ࡸࢆ

ି૚

ൌ
૚

૛૙ െ ࢐૛૙
൅

૚
૝૙ ൅ ࢐૜૙

ି૚

ൌ ૛૛. ૛ െ ࢐ૠ. ૙૜ ࢹ	

LeqZ
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~

Ideal Transformer
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sourceV
~

L2ZL1Z

XZ
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20 20j

75

sourceI
~

loadV
~

Given the following circuit that contains a 120V–48V ideal transformer:

Since there is a 75 impedance connected in series between the source and 
the primary winding, the primary voltage Ep is a function of both the 
source voltage and the source current:

Because of this, the circuit cannot be easily analyzed in its current 
configuration.

Ideal Transformer Example Problem

࢖෩ࡱ ൌ ࢋࢉ࢛࢘࢕෩࢙ࢂ െ ࢋࢉ࢛࢘࢕෨࢙ࡵ · ࢞ࢆ

࢖෩ࡱ ് ࢋࢉ࢛࢘࢕෩࢙ࢂ
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5.2a

loadV
~
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Given the following circuit that contains a 120V–48V ideal transformer:

Thus, to facilitate the analysis of the circuit, the ideal transformer and 
load combination will initially be replaced by an overall equivalent 
impedance that equals the input impedance seen looking into the 
transformer’s primary terminals:

Ideal Transformer Example Problem

࢔࢏ࢆ ൌ ࢗࢋࡸࢆ
ᇱ ൌ ૛ࢇ · ࢗࢋࡸࢆ ൌ ૛. ૞૛ · ૛૛. ૛ െ ࢐ૠ. ૙૜ ൌ ૚૜ૡ. ૞ െ ࢐૝૜. ૢ ࢹ	
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138.5 43.9j
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Given the following circuit that contains a 120V–48V ideal transformer:

Note that, when the transformer–load combination is replaced by their 
equivalent impedance, the voltage across the impedance and the 
current flowing through the impedance are equal to the primary 
winding voltage and current respectively. 

Ideal Transformer Example Problem
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Given the following circuit that contains a 120V–48V ideal transformer:

Now that the overall circuit has been simplified down to a relatively trivial 
circuit, the unknown voltages and currents remaining in the simplified 
circuit can be determined by applying basic circuit theory.

Additionally, once the remaining voltages and currents are determined, the 
basic turns-ratio equations can be utilized in order to relate the primary-
side voltages and currents to the secondary-side quantities.
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sourceV
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Ideal Transformer Example Problem
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Ideal Transformer
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loadV
~

Given the following circuit that contains a 120V–48V ideal transformer:

Since the circuit has been reduced-down to two series impedances, the 
remaining voltages and currents can be determined as follows:

Ideal Transformer Example Problem

ࢋࢉ࢛࢘࢕෨࢙ࡵ ൌ
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Given the following circuit that contains a 120V–48V ideal transformer:

Since Ep and Ip in the reduced circuit equal Ep and Ip in the original circuit, 
the secondary voltage Es and secondary current Is can be determined:

Note that the load voltage and the total load current

Ideal Transformer Example Problem
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 632

Given the following circuit that contains a 120V–48V ideal transformer:

Now that the source and load voltages and currents are known, the source 
and load complex powers can be determined:

Ideal Transformer Example Problem
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