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Complex Power
in

Steady-State AC Circuits

ECET 3500 – Survey of Electric Machines

The voltage potential produced by an AC source may 
be defined as: 

where: is the peak value of the voltage,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the voltage waveform.
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Similarly, the current produced by the AC source may 
be defined as: 

where: is the peak value of the current,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the current waveform.
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Electric Power is defined as the rate at which 
electric energy is either produced or consumed 
by an element within the circuit.

The power produced or consumed by a circuit 
element can be determined from the voltage and 
current waveforms associated with that element:

(Watts)

where:           is the instantaneous rate that a circuit
element either produces or consumes 
energy at time t.

Power in AC Circuits
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Note that the expression:

defines the power “PRODUCED” by an element 
when the current is defined in the same direction 
as the voltage-rise across the element.

But, if the current is defined in the opposite direction 
as the voltage-rise across an element, then p(t)
defines the power “CONSUMED” by that element. 

Source vs. Load Convention
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In the case of an AC source where:

the general expression for power produced by the 
source is:

To better understand the nature of this expression, it 
may by useful to first consider the case where the 
voltage source is supplying a resistive load.
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Given the voltage, vR, across a resistive load:

the resultant current, iR, that flows through the 
resistor is defined by Ohm’s Law as:
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Thus, for a resistive load:

the peak value of the current also adheres 
to Ohm’s Law:

and the phase angle of the current equals the phase angle of the 
applied voltage…

There is no phase shift between the voltage and current waveforms relating to a purely resistive load.
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Given a resistor’s voltage and current waveforms:

the power consumed by the resistor is:      
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Note that the resistor power varies periodically
but at a frequency that is 2x larger than that of 
the resistor’s voltage and current waveforms.

Also note that the power consumed by the resistor 
is always non-negative, which is expected since 
any negative power values would imply that the 
resistor is instantaneously “producing” power.
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Although the power consumed by a resistor varies 
periodically between zero and its peak value
under steady-state conditions:

a resistor’s operation is often characterized in 
terms of the average power that it consumes.
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To better understand the resistor power waveform, 
it is useful to rewrite the power equation into the 
following form:

AC Power and Resistors

(by utilizing the trigonometric identity sin2x = ½·[1 – cos2x])
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Looking at the resultant resistor power waveform:

It can be seen that the expression has two terms:

• The first term is a constant that provides the value
of the average power consumed by the resistor.
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Looking at the resultant resistor power waveform:

It can be seen that the expression has two terms:

• The second term is a purely “sinusoidal” term 
that has a zero average value and varies with a 
frequency that is 2x larger than that of the source.
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In an AC system, the Real Power, P, produced or 
consumed by a circuit element is defined in terms 
of the average power produced or consumed by 
that element:

(Watts)

Note – since power is constant in a DC circuit, this 
definition for real power also applies to the 
power produced or consumed by any 
element in a DC circuit.
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Given a resistor supplied by an AC source, the 
real power, PR(AC), consumed by the resistor is 
the average value of the its power waveform, 
which is only ½ that of its peak value:  

(Watts)

Yet, this result may cause confusion if the AC 
real power value is compared to the constant 
power supplied to a resistor by a DC source.

AC vs. DC Power in Resistors
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If the peak value of the AC source is equal to the 
magnitude of a separate DC source (Vpeak=VDC) 
and both sources supply similar resistors, then:

the real power consumed by the AC-supplied 
resistor will only be ½ that of the power 
consumed by the DC-supplied resistor .
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In other words:

Given an AC source whose peak value is equal 
to the magnitude of a DC source,

If both sources supply similar resistors,

Then the AC source will be ½ as effective as 
the DC source in terms of power supplied to 
a resistor.
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For example:

The real power consumed by a 500 resistor 
supplied by a 100Vpeak AC source is:

And the power consumed by a 500 resistor 
supplied by a 100V DC source is:

AC vs. DC Power in Resistors
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But, given an AC source with peak voltage Vpeak,

If an effective voltage magnitude, Veff , is defined 
for the AC source in terms of the magnitude of a 
DC source that would deliver the same average 
power to a resistor, then:

“What is the effective voltage magnitude   
of an AC source with peak voltage Vpeak?”
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Given:

if:

then the AC and DC sources will both supply 
equal average (real) powers to the resistor.

Thus, the effective voltage of the AC source is:
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For example:

Given: Vpeak = 100V and R = 500,

(Watts)

but:

if: VDC = 70.7V and R = 500:
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It turns out that the effective voltage magnitude 
of a sinusoidal AC source:

is equal to the RMS (root-mean-squared) value 
of its AC waveform, as defined by the function:
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The voltage potential and current produced by 
an AC source can also be expressed in terms of 
their RMS magnitudes, V and I respectively: 

where: is the RMS magnitude of the AC voltage, and

is the RMS magnitude of the AC current.
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When expressed in terms of their RMS magnitudes:

the power delivered to a resistor is:

which has an (average) Real Power value of:
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The result:

is similar to the DC formula for power:

which provides an advantage for defining the AC 
waveforms in terms of their RMS magnitudes 
instead of their peak values.
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Real Power (P ) is the average power produced 
or consumed by an element in an AC circuit.

Real Power is defined in units of Watts.

In a purely resistive AC circuit, if the voltages 
and currents are expressed in terms of their 
RMS magnitudes, then real power can be 
calculated as:

Real Power and Resistors
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What if the AC source is supplying a load that is 
purely reactive…

I.e. – either Capacitive or Inductive?

Although a sinusoidal (AC) voltage source will cause 
a sinusoidal (AC) current to flow through both 
capacitors and inductors, their voltage and current 
waveforms do not follow the linear Ohm’s Law 
relationship.  Instead, their voltage and current 
waveforms are governed by a differential
relationship. 

AC Sources and Reactive Loads
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For an ideal capacitor, the voltage-current relationship 
is defined by the following equations:

We may obtain a solution for steady-state AC operation 
from these relationships.
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Given the voltage applied across a capacitor:

the resultant current will be:

Note that:

• The capacitor current is phase-shifted by +90°
compared to the capacitor voltage, and

• The voltage and current magnitudes do not
follow a linear relationship w.r.t. capacitance.
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Given a capacitor’s voltage and current waveforms:

the power consumed by the capacitor is:      
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Looking at the resultant capacitor power waveform:

it can be seen that it varies sinusoidally at twice   
the frequency of the capacitor’s voltage and current 
waveforms and that it has a zero-average value.
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AC Power and Capacitors
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Despite the fact that the (average) real power 
consumed by a capacitor is zero:

there is energy flowing into and out of the 
capacitor as it temporarily stores and releases 
a charge in a periodic manner.

AC Power and Capacitors
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For an ideal inductor, the voltage-current relationship 
is defined by the following equations:

We may obtain a solution for steady-state AC operation 
from these relationships.

o

t

L

t

LL

L
L

Idttv
L

dttv
L

ti

dt

tdi
Ltv






 0

)(
1

)(
1

)(

)(
)(

AC Sources and Inductors

LvL(t)

iL(t)
+

-

v(t)

+
i(t)



18

Given the voltage applied across a inductor :

the resultant current will be:

Note that:

• The inductor current is phase-shifted by –90°
compared to the inductor voltage, and

• The voltage and current magnitudes do not
follow a linear relationship w.r.t. inductance.

)sin(2)( tVtvL  

AC Sources and Inductors
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Given an inductor’s voltage and current waveforms:

the power consumed by the inductor is:      

AC Power and Inductors
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Looking at the resultant inductor power waveform:

it can be seen that it varies sinusoidally at twice   
the frequency of the inductor’s voltage and current 
waveforms and that it has a zero-average value.

(zero real power)

AC Power and Inductors
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Despite the fact that the (average) real power 
consumed by an inductor is zero:

the inductor also temporarily stores and 
releases energy in a periodic manner.

AC Power and Inductors
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Given a source’s voltage and current waveforms 
expressed in terms of their RMS magnitudes:

the general expression for the instantaneous power
produced by the AC source is:
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Note that this 
expression also 

defines the 
power consumed 

by the load

The instantaneous power expression:

can be modified using several trigonometric
identities into the following form:
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The expression for AC power has three terms:

The first term is a constant that provides the average 
or real power produced by the source:
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The expression for AC power has three terms:

The remaining terms are both purely sinusoidal and 
vary at a frequency that is 2x greater than that of the 
voltage or current waveforms.
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For a purely resistive load ( ), the general 
power waveform:

simplifies to:

which is equivalent to the previously determined 
result for a purely resistive load.

AC Power and Resistors
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For a purely capacitive load ( ) or a purely 
inductive load ( ), the waveform:

simplifies to:

which is similar to the previously determined 
results for capacitive and inductive loads.

AC Power and Capacitors or Inductors
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The term Reactive Power is used to characterize 
the amount of energy that is temporarily stored 
and released by reactive loads. (I.e. – capacitive 
or inductive loads).

Reactive Power, Q, is defined as the peak value of 
the power that flows in and out of a reactive load.

Since, for a purely reactive load:

then:

or (VARs)

Reactive Power

)2sin( )( tIVtp  
LvL(t)

iL(t)
+

-

v(t)

+
i(t)

CvC(t)

iC(t)
+

-

v(t)

+
i(t)

IVQC  IVQL 
VARs ≡ VoltAmpsReactive

Although a voltage source can produce (or consume) 
both real power and reactive power, in terms of 
passive loads (resistors, capacitors and inductors):

Real power is consumed only by resistive loads.
(Ideal capacitors and inductors consume zero-average power)

Reactive power only relates to reactive loads.
(Resistors do not temporarily store and release energy)

Real Power and Reactive Power

LvL(t)

iL(t)
+

-

v(t)

+
i(t)

0RQ

RvR(t)

iR(t)
+

-

v(t)

+
i(t)

CvC(t)

iC(t)
+

-

v(t)

+
i(t)

0CP 0LP
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If a source is connected to a circuit that contains a 
combination of resistive, capacitive, or inductive   
loads, then the angle difference,  , between the      
phase angles of the voltage and current will be:

In a circuit with multiple load-types, the angle difference:

θ ≠ 0°, –90°, or +90°

thus all three terms will exist in the power waveform:

AC Power in Mixed (R-L-C) Circuits

)2sin()sin(           

)2cos()cos(            

)cos()(

tIV

tIV

IVtp


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







 9090 

v(t)

+
i(t)

v(t)

i(t)
+

-

Given a source that is connected to a circuit that 
contains multiple load-types and the general 
power waveform:

Real power is defined as the average value of the 
power waveform:

Watts

Real Power in R-L-C Circuits
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+
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v(t)
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+

-

)cos( IVP

)sin(2)(   tVtv

)sin(2)(   tIti

 
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Given a source that is connected to a circuit that 
contains multiple load-types and the general 
power waveform:

Reactive power is magnitude of the third term 
which relates to the power that flows in and out of 
a reactive elements in the circuit:

VARs

Reactive Power in R-L-C Circuits
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)sin(2)(   tVtv

)sin(2)(   tIti

 

Although Reactive Power, Q, is defined as the 
magnitude of the power that flows in and out of 
the reactive loads:

The reactive power equation will return a 
negative value for a circuit that is primarily 
capacitive (–90° ≤ θ ≤ 0°), and

The reactive power equation will return a 
positive value for a circuit that is primarily 
inductive (–90° ≤ θ ≤ 0°).

Reactive Power – Capacitors vs. Inductors

)sin( IVQ

Despite being defined as a 
magnitude, the sign is often 
included to characterize the 

type of the load (capacitive or 
inductive) to which the 
reactive power relates. 

Due to the resultant signs, capacitors are 
often characterized as “producing” 

reactive power and inductors are often 
characterized as “consuming” reactive 

power despite neither actually consuming 
or producing a net amount of energy

v(t)

+
i(t)

v(t)

i(t)
+

-
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When performing a phasor analysis on an AC
circuit, the sinusoidal voltages and currents:

are defined by their phasor values:

such that they are expressed as complex numbers in polar form
with the RMS magnitude and phase angle of their respective 
sinusoidal waveform.

  VVeV j~

Phasor Analysis of an AC Circuit

)sin(2)(   tIti

)sin(2)(   tVtv

  IIeI j~

The phasor values are also 
shown in complex exponential
form because some calculators 
do not allow complex numbers 
to be expressed in polar form.

When expressed in polar form, the angles 
may be defined either in degrees or radians.
But, when expressed in complex exponential 
form, most calculators require the angles to 

be defined in radians.

v(t)

+
i(t)

v(t)

i(t)
+

-

Additionally, when performing a phasor analysis on 
an AC circuit, the individual load elements:

R, L, and C

are defined in terms of their impedance values, Z, 
such that for:

Circuit Elements Impedance Values

Resistors 

Inductors 

Capacitors 

Phasor Analysis of an AC Circuit

v(t)

+
i(t)

v(t)

i(t)
+

-












C
jZC 

1

 LjZL  

RZR 
Note that the impedance of a 
resistor is purely real, while
the impedance of either an 
inductor or a capacitor is 

purely imaginary.
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Note that, when expressed in polar form, the angle of the impedance 
is the difference angle  .

When performing a phasor analysis, multiple load 
elements are often combined into single equivalent 
impedances that have both resistive and reactive 
components, such that:

where: R is the resistive component of the load, and
X is the reactive component of the load.

Phasor Analysis with Complex Impedances

v(t)

+
i(t)

v(t)

i(t)
+

-

jXRZ  Complex number expressed 
in rectangular form









 Z
I

V

I

V

I

V

I

V
Z  )(~

~

The term Complex Power is used to characterize 
both the real power and the reactive power 
produced or consumed by a single element in an 
AC circuit.

Complex Power, S, is typically expressed as a 
complex number in rectangular form:

where: P is real power, and

Q is reactive power.

Complex Power

v(t)

+
i(t)

v(t)

i(t)
+

-

QjPS    

VV
~

 II
~

jXRZ 
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The Complex Power produced or consumed by a 
single element in an AC circuit can be defined in 
terms of that element’s phasor voltage and current:

where     is the complex conjugate of the current   :

Phasor Analysis and Complex Power

v(t)

+
i(t)
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-
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Two other quantities related to complex power are 
often utilized when characterizing AC systems:

Apparent Power, |S|, is defined as the magnitude 
of complex power:

Power Factor, pf, is defined as the ratio of an 
elements real power over its apparent power:

Apparent Power and Power Factor

v(t)

+
i(t)

v(t)

i(t)
+

-

 

VV
~

 II
~

jXRZ 

22 QPIVS 
Apparent Power is 

often used when rating 
an AC device:

|S|rated = Vrated  Irated


 

  
cos

cos






IV

IV
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P
pf

 IVS
~~
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Power Factor is often characterized by a qualifier, 
either leading or lagging.

A leading power factor exists for a capacitive load 
where the current waveform is “leading” the 
voltage, resulting in a negative difference angle θ:

A lagging power factor exists for an inductive load 
where the current waveform is “lagging” the 
voltage, resulting in a positive difference angle θ:

Leading or Lagging Power Factor

v(t)

+
i(t)

v(t)

i(t)
+

-

 

VV
~

 II
~ 090 

 900 

For a purely resistive load, 
the difference angle

θ = 0°
resulting in a “unity” 

power factor
pf = cosθ = cos0° = 1

Complex Power (S):

Real Power (P):

Reactive Power (Q):

Apparent Power (|S|):

Power Factor (pf):

Summary of Complex Power Equations
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cos IVP

sin IVQ

cospf
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