

Rectangular ↔ Polar Coordinate Mapping 90^o Imag. For example: $\mathbf{Z} = 2 + \mathbf{j}\mathbf{1.5}$ 135° 150 The point $\mathbf{Z} = 2 + \mathbf{j}\mathbf{1.5}$ can be shown on a rectangular coordinate plot. Z = 2 + j1.5 $Z = 2.5 \angle 36.9$ If a polar coordinate plot is overlaid on top of the rectangular plot and 0° Real the point's value is read in polar coordinates, it value will be: Z = 2.5∠36.9° -135⁰ Thus: $Z = (2 + j1.5) = (2.5 \angle 36.9^{\circ})$

The Smith Chart Coordinate System

Shown to the right is a very simple version of only the <u>impedance</u> <u>portion</u> of a Smith Chart...

"simple" such that very few sets of points (circles and arcs) are displayed on the chart.

The **circles** and **arcs** provide a coordinate system that may be used to plot complex numbers expressed in rectangular form.

Basic Smith Chart

The Smith Chart Coordinate System

Sets of points with constant **real** values are defined by **circles** on the Smith Chart.

Note that only the circles relating to sets of points having <u>non-negative</u> real values are utilized since (passive) impedances are restricted to having non-negative resistances.

Real Values

The Smith Chart Coordinate System

Sets of points with the same imaginary value are defined by arcs on the Smith Chart.

Note that the set of points defined by a specific arc are a subset of the points that define a circle on which the points have a constant imaginary value, but with the points further constrained to have only non-negative real values.

Imaginary Values

The Smith Chart Coordinate System

Smith Charts vs. Rectangular Coordinate Plots

On a rectangular coordinate plot, magnitudes of both the real and imaginary parts from $0 \rightarrow 1$ take up much less physical space than magnitudes ranging from $1 \rightarrow \infty$.

But the Smith Chart tends to expand or spreadout impedances whose magnitudes range from $0 \rightarrow 1$ and compress those whose magnitudes range from $1 \rightarrow \infty$.

For this reason, it is often easier to accurately plot/read small impedances on a Smith Chart.

Indection Coefficient Mapping $f_{1/2}$ f_{2-100} $f_{2-150+j600}$ Determine the reflection coefficient of a $Z_R = (150 + j60)\Omega$ load that terminates a $Z_0 = 100\Omega$ line:

$$\Gamma_{S} \xrightarrow{E_{s}^{+}}_{\mathbf{x}=\mathbf{0}} \mathbf{z}_{\mathbf{0}} \xrightarrow{E_{R}^{+}}_{\mathbf{x}=\mathbf{L}} \mathbf{z}_{\mathbf{0}}$$

Since the expression relating Z_R and Γ_R is in the same form as the expression relating Z_{in} and Γ_{in} :

$$Z_{R} = Z_{o} \cdot \frac{1 + \Gamma_{R}}{1 - \Gamma_{R}} \qquad \qquad Z_{in} = Z_{o} \cdot \frac{1 + \Gamma_{in}}{1 - \Gamma_{in}}$$

the mapping between impedance and reflection coefficient on a Smith Chart can also be applied to the input of a line.

Smith Charts & Reflection Coefficients

But, the key to preforming a Smith Chart analysis of a transmission line problem is the relationship between the reflection coefficient due to a load, Γ_R , and the reflection coefficient seen at the input of a line, Γ_{in} :

$$\Gamma_{in} = \Gamma_R \cdot e^{-2 \cdot \gamma \cdot I}$$

Investigating $\Gamma_{in} = \Gamma_R \cdot e^{-2\gamma L}$ on a Lossless Line

If the angle θ_R is determined from the plot of the normalized load impedance, then the angle θ_{in} can be determined from:

$$\theta_{in} = \theta_R - 2\beta L$$

and the **position of** Γ_{in} will be located wherever an **angle-line** relating to the angle θ_{in} crosses the constant $|\Gamma|$ circle.

