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ECET 3410
High Frequency Systems

Introduction to

Smith Charts
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A rectangular coordinate plane 
can be used to plot a complex 
number, Z, that is expressed in 
the form:

Z = a + jb

where: a is the value of the     
real part of Z, and

b is the value of the 
imaginary part of Z.

Rectangular Coordinates
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Note that, when in the form:

Z = a + jb

the complex number Z is often 
referred to as being expressed 
in either:

rectangular coordinates
or

rectangular form.

Rectangular Coordinates
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Z = 2 + j1

When analyzing steady-state AC 
systems, impedances are often 
defined as complex numbers 
expressed in rectangular form. 

Thus, given the impedance:

Z = 2 + j1

the impedance may be plotted 
as a point on a rectangular 
coordinate plane as shown:

Rectangular Coordinates
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Rectangular Coordinates

The point Z = 2 + j1 may be 
thought of as the intersection 
between two sets of points:

Set#1 – The set of all points 
having a real value    
of “2”

Set#2 – The set of all points 
having an imaginary 
value of “1”
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Z = 2 + j1

Rectangular Coordinates

Note that, when drawn on a 
rectangular coordinate plane:

 The set of points (Set#1) having 
a constant real value appears 
as a vertical line, and

 The set of points (Set#2) having 
a constant imaginary value 
appears as a horizontal line.
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Z = 2 + j1
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The polar coordinate system provides 
another method for plotting complex 
numbers provided that they are 
expressed in “polar” form (C),

where: C  is the distance of the 
point from the origin,

 is the angle between the 
origin-to-point segment 
and the right-hand side 
of the horizontal axis.

For example:  Z = 345

The Polar Coordinate System
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45oZ = 3

The point Z = 345 can be may be 
thought of as the intersection 
between two sets of points:

Set#1 – The set of all points having 
a distance of “3” from the 
origin

Set#2 – The set of all points that 
form an angle of “45” 
with the right-hand side of 
the horizontal axis

The Polar Coordinate System
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When overlaid such that they share a 
common origin and they are given 
the same scale, the rectangular and 
polar coordinate plots provide a 
mapping between complex numbers 
expressed in rectangular coordinates 
and complex numbers expressed in 
polar coordinates.

Rectangular  Polar Coordinate Mapping
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Z = 2 + j1.5

For example:  Z = 2 + j1.5

The point Z = 2 + j1.5 can be shown 
on a rectangular coordinate plot.

Rectangular  Polar Coordinate Mapping
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36.9oZ = 2.5

36.9
o
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Z = 2 + j1.5

For example:  Z = 2 + j1.5

The point Z = 2 + j1.5 can be shown 
on a rectangular coordinate plot.

If a polar coordinate plot is overlaid 
on top of the rectangular plot and 
the point’s value is read in polar 
coordinates, it value will be:

Z = 2.536.9

Thus:  Z = (2 + j1.5) = (2.536.9)

Rectangular  Polar Coordinate Mapping

Introduction to Smith Charts

A Smith Chart may be thought of 
as a plot for impedances that are 
expressed as complex numbers in 
rectangular form, similar to a 
rectangular coordinate plane but 
with a completely different 
coordinate system.
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Smith Charts actually provide a mapping of:

Reflection Coefficient                                  
(in Polar Form)

to

Load Impedance                                          
(in Rectangular Form),

based on the equation:

provided the impedance plane is scaled 
such that its origin is equal to Zo, the 
characteristic impedance of the line.

Introduction to Smith Charts

oR

oR
R ZZ

ZZ




 origin

Introduction to Smith Charts

In other words:

Given a transmission-line that is 
terminated by load impedance ZR 
(expressed in rectangular form),    
a Smith Chart may be utilized      
to graphically determine the 
reflection coefficient of the load 
R (expressed in polar form).

Note that the reverse is also true:

jXRZR 
oR

oR
R ZZ

ZZ




 
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Introduction to Smith Charts

Understanding the layout of the  
Smith Chart’s complex number 
coordinate plane along with the 
steps required to both plot and 
read impedance values on a 
Smith Chart is an essential part 
of this process.

But this can be complicated by the 
amount of information displayed 
on and around the Smith Chart.

Shown to the right is a very simple 
version of only the impedance 
portion of a Smith Chart…

“simple” such that very few sets 
of points (circles and arcs) are 
displayed on the chart.

The circles and arcs provide a 
coordinate system that may be 
used to plot complex numbers 
expressed in rectangular form.

Basic Smith Chart

The Smith Chart Coordinate System
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Sets of points with constant real
values are defined by circles on  
the Smith Chart.

Note that only the circles relating to 
sets of points having non-negative
real values are utilized since 
(passive) impedances are restricted 
to having non-negative resistances.

The Smith Chart Coordinate System

Real Values

Sets of points with the same 
imaginary value are defined by 
arcs on the Smith Chart.

Note that the set of points defined 
by a specific arc are a subset of 
the points that define a circle on 
which the points have a constant 
imaginary value, but with the 
points further constrained to have 
only non-negative real values.

The Smith Chart Coordinate System

Imaginary Values
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Let use go back and look at the 
impedance point:  Z = 2 + j1.

This point, Z, can be thought of as the 
intersection of two sets of points:

• one having a real value of 2, and
• the other having an imaginary 

value of +1,

similar the vertical and horizontal 
sets shown previously on the 
rectangular coordinate plot.

Set#1

Set#2

Plotting an Impedance on a Smith Chart

Real Circles and Imaginary Arcs

Z

+j1

2

But on the Smith Chart:

Set#1 is defined by a circle on 
which every point has a real 
value of “2”

Set#2 is defined by an arc on 
which every point has an 
imaginary value of “1”

The intersection of which is the 
point Z = 2 + j1.

Set#1

Set#2

Plotting an Impedance on a Smith Chart

Real Circles and Imaginary Arcs

2+j1

+j1

2
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Similarly, the point Z = ½ - j½      
can be found at the intersection 
of the circle the has real values 
of “½” and the arc that has 
imaginary values of “-½”.

Plotting an Impedance on a Smith Chart

Real Circles and Imaginary Arcs

½-j½

Smith Charts vs. Rectangular Coordinate Plots

In order to better understand the characteristics of a Smith Chart, 
let’s begin by comparing and contrasting it to a rectangular 
coordinate plot. 

The Smith Chart Coordinate System
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Smith Charts vs. Rectangular Coordinate Plots
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Smith Charts only show non-negative real-value impedances, 
which is equivalent to displaying only the 1st and 4th quadrants 
of a rectangular coordinate plot.

1st Quad.

4th Quad.

The Smith Chart Coordinate System
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Positive Imaginary Values
(Inductive Reactances)

Negative Imaginary Values
(Capacitive Reactances)

Positive Imaginary Values
(Inductive Reactances)

Negative Imaginary Values
(Capacitive Reactances)

The Smith Chart Coordinate System

Smith Charts vs. Rectangular Coordinate Plots

Positive imaginary values appear on the top half of both plots 
and negative imaginary values appear on the bottom half of 
both plots.
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The Smith Chart Coordinate System

Smith Charts vs. Rectangular Coordinate Plots

On a rectangular coordinate plot, magnitudes  
of both the real and imaginary parts from      
0  1 take up much less physical space than 
magnitudes ranging from 1  ∞.

But the Smith Chart tends to expand or spread-
out impedances whose magnitudes range 
from 0  1 and compress those whose 
magnitudes range from 1  ∞.

For this reason, it is often easier to accurately 
plot/read small impedances on a Smith Chart.

Utilizing a Smith Chart:

A simple method may by applied 
using a Smith Chart to invert a 
complex number.

For example, given the impedance:

Z = 1 + j1 
the admittance value relating to 
this impedance is Y = 1/Z.

Converting Impedances to Admittances

Z
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To invert a complex impedance Z:

Plot the impedance Z on the Smith 
Chart and then find the point on 
the chart that is equidistant from 
the origin but on the exact 
opposite side of the chart.

Given the impedance Z = 1 + j1 , 
the admittance determined by 
using this method is Y = ½ - j½.

Y

Converting Impedances to Admittances

Z

A Smith Chart provides a mapping of:

Reflection Coefficient to Load Impedance

based on the equation:

provided that the impedance plane is 
scaled such that its origin is equal to Zo, 
the characteristic impedance of the line.

But, this would require a new Smith Chart 
for each type of line with a different 
characteristic impedance.

oR

oR
R ZZ

ZZ






origin

Impedance  Reflection Coefficient Mapping
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In order to accommodate a variety of lines, 
a normalized Smith Chart is often used, 
such that the origin of the normalized 
chart has an impedance value of one (1).

The normalized Smith Chart provides a 
mapping of Reflection Coefficient to 
Load Impedance based on the equation:

where      is the normalized load

Normalized Smith Charts

origin = 1

RZ

1

1





R

R
R Z

Z

impedance.

o

R
R Z

Z
Z 

Impedance  Reflection Coefficient Mapping

1/3 

Zo =  ZR = jZin

Determine the reflection coefficient 
of a ZR = (150 + j60) load that 
terminates a Zo = 100 line:
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Impedance  Reflection Coefficient Mapping

1/3 

Zo =  ZR = jZin

Determine the reflection coefficient 
of a ZR = (150 + j60) load that 
terminates a Zo = 100 line:

Step 1: Normalize and plot the 
load impedance.




 )6.05.1(
100

60150
j

j

Z

Z
Z

o

R
R

 )6.05.1( jZR

ZR=1.50+j0.60

ZR=1.50+j0.60

Step 2: Determine the |R| by 
measuring the distance from ZR 
to the origin and then reading 
the value of that distance to the 
left of the center point on the  
3rd scale (RFL COEFF E or I) at 
the bottom of the Smith Chart.

3.0|| R 
3.0|| R 

1/3 

Zo =  ZR = jZin

Impedance  Reflection Coefficient Mapping

 )6.05.1( jZR
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ZR=1.50+j0.60

Step 3: Determine the R by 
reading the position that a line 
beginning at the origin and 
passing through ZR crosses the 
3rd band (Angle of Reflection 

Coefficient in Degrees) around 
the outer portion of the chart.

 8.36R

 8.36R
1/3 

Zo =  ZR = jZin

Impedance  Reflection Coefficient Mapping

ZR=1.50+j0.60

Thus, R is:

Checking the result:

 8.3630R .









 7.363040
60250

6050

oR

oR
R .

j

j

ZZ

ZZ

1/3 

Zo =  ZR = jZin

Impedance  Reflection Coefficient Mapping

3.0|| R 

 8.36R
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Now that we have explored         
the Smith Chart’s complex 
impedance plane and its 
mapping of reflection coefficient 
to impedance, we are ready to 
begin a more detailed analysis  
of Smith Charts and their 
application to the solution of 
transmission line problems.

Transmission Line Analysis using Smith Charts

Since the expression relating ZR and ΓR is in the same form as the 
expression relating Zin and Γin:

the mapping between impedance and reflection coefficient on a 
Smith Chart can also be applied to the input of a line.

R

R
oR ZZ





1

1

in

in
oin ZZ





1

1

ZR

R 

x=0 x=L

Zo 
RE


RE

S 
sE


sE

Smith Charts & Reflection Coefficients
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But, the key to preforming a Smith Chart analysis of a transmission 
line problem is the relationship between the reflection coefficient 
due to a load, ΓR, and the reflection coefficient seen at the input 
of a line, Γin:

Smith Charts & Reflection Coefficients

L
Rin e  2

ZR

R 

x=0 x=L

Zo 
RE


RE

in 
sE


sE

L

The relationship:

can be expanded by substituting                , such that:

where:  is the attenuation constant for the line (Np/m), and
 is the phase constant for the line (rad/m).

L
Rin e  2

Investigating the Relationship in = Rꞏe –2L

 j

ZR

R 

x=0 x=L

Zo 
RE


RE

in 
sE


sE

)2()(  22 2)j  (22 Leeeee L
R

LjL
R

L
R

L
Rin   

L
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ZR

R 

x=0 x=L

Zo

If the reflection coefficients are expressed in polar form:

then the reflection coefficient relationship can be rewritten as:

where: and


RE


RE

  )2()2(  2 2 LeLe R
L

R
L

RRin    

RRR 


sE


sE

in

ininin 

L

Investigating the Relationship in = Rꞏe –2L

L
Rin e   2 LRin  2

Given the relationship:

if α> 0, then the magnitude of the input reflection coefficient will 
decrease exponentially as the length of the line, L, increases.

But, if α= 0 (lossless line), then               .  When this occurs, both 
points will be equidistant from the origin of the Smith Chart*.

ZR

R 

x=0 x=L

Zo 
RE


RE

in 
sE


sE

L

Investigating the Relationship in = Rꞏe –2L

L
Rin e   2

Rin 

* – the set of points that are all 
equidistant from the origin of 
the Smith Chart forms a circle 
that is centered at the origin.
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Furthermore, given the relationship:

since β> 0, the angle of the input reflection coefficient will 
decrease linearly as the length of the line, L, increases.

But, on a polar plot, a decrease (on increase) in angle by 360
(or 2π radians) results in one complete rotation around the plot*.

ZR

R 

x=0 x=L

Zo 
RE


RE

in 
sE


sE

L

Investigating the Relationship in = Rꞏe –2L

* – when expressed  in polar form, 
complex numbers repeat periodically 
with every    360 change in angle.

A = A  360 LRin  2

ZR

Thus, on a lossless line (α= 0), 
since:

if ΓR is located on a Smith Chart, 
then Γin must fall on a circle that 
is centered about the origin 
and passes through the point ΓR.

Investigating in = Rꞏe –2L on a Lossless Line 

Rin 

Note that R can be located 
by plotting the normalized 

load impedance ZR.

constant || circle
plotted point is 
mapped to R
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LRin  2

Investigating in = Rꞏe –2L on a Lossless Line 

ZR

R
If the angle R is determined from 

the plot of the normalized load 
impedance, then the angle in

can be determined from:

and the position of Γin will be 
located wherever an angle-line 
relating to the angle in crosses 
the constant || circle.

constant || circle

ZR

LRin  2

Investigating in = Rꞏe –2L on a Lossless Line 

22

2
2











L

Given the relationship:

whenever 2βL = 2π radians, the 
location of Γin will rotate CW one 
revolution around the constant || 
circle beginning at ΓR.

Note that this occurs when             
or when:

 22 L

2


L
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ZR

LRin  2

Investigating in = Rꞏe –2L on a Lossless Line 

Note that a linear, ½ ̶̶ wavelength 
scale is included in the outer bands 

of the Smith Chart in order to 
facilitate the required rotation. 

And, since the relationship:

provides a linear decrease in the 
angle in as a function of line 
length L, Γin will rotate CW

around the constant || circle 
proportional to one revolution 
per ½-wavelength of line length.

ZR

What if the line is lossy (α > 0)?

On a Lossy Line:

 
Since e –2·α·L is an exponential decay 

function, the |in| will decrease as 
the length of the line increases.

Thus, the impedance Zin will be 
closer to the origin than ZR.

Investigating in = Rꞏe –2L on a Lossy Line 

Remember that the |in| 
defines the distance from the 
normalized impedance Zin to 
the origin of the Smith Chart. 

L
Rin e   2
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ZR

To find |in| on a lossy line:

 Plot ZR and measure the distance 
from ZR to the origin.

 Use the 3rd scale to determine  
the |R|.

 Calculate |in| from:

(Use the 3rd scale again to determine   

the distance of Zin from the origin)

Investigating in = Rꞏe –2L on a Lossy Line 

L
Rin e   2

ZR

Note that the magnitude change due 
to the attenuation constant α is 
independent of the angle change 
due to the phase constant β.

This allows the two effects to be 
accounted for independently.

Investigating in = Rꞏe –2L on a Lossy Line 

L
Rin e   2

LRin  2
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