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ECET 3410

High Frequency Systems

AC Sourced
Transmission Lines

Review

The concept of a transmission line was introduced during the
previous presentation, with a focus on both the transient and
steady-state operation of a lossless transmission line that was
being supplied by a DC source that was initially energized at
some arbitrary point in time.
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Review

Based on that discussion:

e When a DC source is initially connected to the sending-end
of a line, an initial voltage potential, V*, will appear across
the sending-end, and in order to build-up the charge-difference
required for that voltage potential to exist, an initial current, I*,
will begin to flow into the line, the magnitudes of which can be
determined based on both the source’s electrical parameters
and the characteristic impedance, Z, of the transmission line.
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Review

Based on that discussion:

¢ And, as current continues to flow into the sending-end, the charge
that previously entered will be pushed further down the line,
resulting in what appears to be current flowing further and
further down the line. And since the portion of the line across
which a charge-difference exists will increase as the current
pushes further down the line, a voltage potential will also appear
to simultaneously move down the line with the flow of current.
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Review

Based on that discussion:

e Thus, the concept of traveling waveforms was first presented in
the form of an incident voltage, V'*, and an incident current, I

Note that, for a lossless transmission line, the rate at which the
voltage and current waveforms appear to travel down the line
(i.e. — velocity) was a function of the material properties of the

insulating material that surrounded the conductors.
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Review

Based on that discussion:

e When the incident voltage and current reach the receiving-end
of the line, two things can happen depending on whether or not
the load impedance is matched to the characteristic impedance:

* The energy associated with the traveling waves will be
delivered to the load, or

= The energy associated with the traveling waves will reflect
off of the load and travel back towards the sending-end.
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Based on that discussion:

o [f the load is matched to the characteristic impedance of the line:
Zy=2,
then all of the energy associated with the traveling waves will
be delivered to the load, and steady-state operation will be
achieved such that the entire line will be charged-up to the value
of the incident voltage, and the incident current will be flowing
through the entire line.
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Review

Based on that discussion:

¢ But, if the load is not matched to the impedance of the line:
Ly # 72,
then a portion of the traveling waves’ energy will reflect off
of the load and travel back towards the sending-end.

Note that the reflected energy is characterized in terms of a
reflected voltage, V-, and a reflected current, I-.
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Based on that discussion:

e The amount of the wave that reflects off of the load can be
determined based of a reflection coefficient, I';:

VI _7,-2,
ey Z,+2Z,

such that: V-=V"T, ad [ =I"-T,
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Review

Based on that discussion:
¢ And once the reflected waveforms are created, they will travel
back towards the sending-end of the line.

Note that, as the reflected waves travel from the receiving-end,
the voltage and current on the line will change since:

Ve=V,"+V," and I,=1,-1,
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Review

Based on that discussion:
¢ Eventually the reflected waveforms will reach the sending-end,
and if the source is matched to the impedance of the line:
Zs=12,
then all of the energy of the reflected waves will be delivered

back to the source, and steady-state operation will be
achieved such that:

VLine = V+ +V— and ILine = I+ _I_
V= G ZZOZ i > Vﬁ:VﬂFR
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AC Sourced Transmission Lines

It turns out that all of the theory that was presented for a DC
supplied transmission line will also apply to a transmission line
that is supplied by an AC source.

But, there is one important consideration that must be taken into
account when analyzing AC-sourced lines:

since the source is sinusoidally varying, both the incident wave
and the reflected wave will also be sinusoidally varying.
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AC Sourced Transmission Lines
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Thus, unlike DC-sourced lines that experience constant voltages
and currents on the entire line under steady-state conditions,
the voltages and currents on the AC-sourced lines will be
time varying, even under steady-state conditions.

And, it is the time-varying nature of these voltages and currents
that will cause the AC-sourced lines to no longer react like a
pair of ideal wires under steady-state conditions, even if
considered lossless.

AC Transmission Lines
Part 1

Transmission Line Modeling
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Transmission Line Modeling
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Due to the sinusoidally-varying nature of an AC source and the
resulting complex mathematics, we cannot approach to concept
of AC-supplied transmission lines in the same simple manner
that we approached DC-supplied lines.

Instead, we will apply finite-element modeling theory to try to
predict the manner in which a transmission line will react to an
AC source.

Transmission Line Modeling
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‘having length Ax | !
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In order to accurately model the effects of a transmission line on
a wave that is propagating down the line, the line is typically
broken down in the small incremental sections (finite elements)
that are connected together (in-series) to form the overall line.
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Incremental Transmission Line Model
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The two primary characteristics of a line that must be included in
the model in order to account for the finite propagation velocity
of a wave that propagates down the line are the inductance and
the capacitance of the line, where:

L is the inductance per unit length (H/length),
C is the capacitance per unit length (F/length), and
Ax is the length of the incremental section.
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Incremental Transmission Line Model

Iin . . RAx  LAx | . Tout

Additionally, for a “lossy” line, the resistance of the conductors
and the conductance of the insulation are also incorporated
into the model, such that:

R is the resistance per unit length (€2/length),
G is the conductance per unit length (S/length),
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Incremental Transmission Line Model
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The overall operation of the line can then be accurately predicted
by replacing each incremental section by the specified model
provided that the length of each section is small compared to
the wavelength of the applied waveform.

Steady-State AC Model

of a Uniform Transmission Line

p Rax Lax Teal
Wl o R = Q/Ax
l L =H/Ax
E Gax Cax EnE G = S/Ax
T - C=F/Ax

The above figure shows the model for an incremental section of
transmission line with the voltages and currents defined at both
the sending-end and the receiving-end terminals, such that E
and I are the phasor values of the voltage and current seen the
sending-end of the line, and AE and Al are the change in the
voltage and current from the sending to the receiving end.
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Steady-State AC Model

of a Uniform Transmission Line

i Rax Lax L Tl
| 1+al
oWy U | EL > R = Q/Ax

L =H/Ax
E Gax Cax EnE G = S/Ax

T - C=F/Ax

The voltage and current at the receiving-end of each line section can
be expressed in terms of the sending-end voltage and current
and the line parameters as follows:

E+AE =E —T -(RAx + jwLAx)

T +Al =1 —(E + AE)-(GAx + jwCAx)

Steady-State AC Model Solution

Given the following equations derived for the incremental model
of a uniform transmission line:
E+AE =E—T -(RAx+ jwLAx)

T +Al =1 —(E + AE)-(GAx + joCAx)
l 1 )
If the second order terms are assumed to be small (AEAx ~0) and
thus ignored, then:

E+

%

E—T -(RAx + jwLAx)

+Al =1 —E -(GAx + jowCAx)

=~
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Steady-State AC Model Solution

The resultant equations:
E+AE =E —T -(RAx + jwLAx)
T +Al =T —E -(GAx + joCAx)
are often simplified by substituting:

Z=R+ jol Y =G+ joC

series impedance parallel admittance

resulting in:

Steady-State AC Model Solution

Given the equations:
E+AE =E -TZAx L+AT =T - EYAx

by canceling like terms, we may solve for the change in the
voltage and current from sending-end to receiving-end of an
incremental section of line (AE and A/ as a function of Ax):

AE = —T7ZAx Al = —EYAx

from which we can define rates-of-change per unit length:

~

=—Z-1 =—Y-E
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Steady-State AC Model Solution

Given the equations:

aQ8 808
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by allowing the length of the incremental section to become
infinitely small (Ax — 0), we can define the following 15 order
differential equations relating to the rates of change in the
voltage and current as a function of position on a uniform line:

limAE_dE_ T limAT_dIN_

== 7T = =2 - yE
Ax—)OAx dx AXHOAX dx

Steady-State AC Model Solution

The 1% order differential equations:

aE__, 7 a__y g
dx dx

can be combined into a single 2" order differential equation by
taking the derivative of both sides of the first equation, solving
for dl/dx, and substituting the result into the second equation:

d’E

— =Z-Y-E
X
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Steady-State AC Model Solution

The 2" order differential equation:

295,59
o 2e%
9e% .6

d’E

o -7.Y-E
X

has the following general solution:

E(x)=d,-e V7" 4 4,7

which can be utilized to define the voltage on a uniform
transmission line as a function of position on the line.

Steady-State AC Model Solution

Note that the equation:
E(x)=d,-e V7" 4 4, -7
has two terms, similar to the equation:
E(x)=E! +E;
which defines the steady-state voltage at position “x” on a
transmission-line as the sum of an incident voltage and a

reflected voltage.
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Steady-State AC Model Solution

By substituting the equation:

E(x)=A-e V74 4,77

into the 1% order differential equation:

328,820
eS8, 58208
|
Il
|
N
~

and solving for current, an equation can also be defined for the
current flowing in a uniform transmission line as a function of
position on the line:

I(x)= _1 @ _ A _ 4 e
Z dx z4 z

Steady-State AC Model Solution

Note that the equation:

o ZY-x . +JZY x
I(x)=Al e _4,-e

also has two terms, similar to the equation:

[=1~1I;
which defines the steady-state current at position “x” on a
transmission line as the difference between an incident current

and a reflected current.
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Steady-State AC Model Solution

Furthermore, note that the first term of the current equation:

aQ8 808
858..0

—ZY- VZ-Y -2
A4 -e T4, e

is equal to the first term of the voltage equation:

T(x)=

E(x)=A -e V74 4, eV

divided by the constant V% .

The same relationship also holds true for the second terms of the
respective equations.

Steady-State AC Model Solution

Thus, given the equations:

~ - A o ZYx A . +«/ﬁ-x
E(x)=d-e V77 1 4,77 [(x)=2"5 -8
1 \/Z_Y

and the relationships:

it can be seen that both of the first terms of the derived equations
relate to incident voltage and current waveforms while the
second terms relate to reflected voltage and current waveforms.
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Steady-State AC Solution
Relationships

And, based on those results, the following terms may be defined:

Characteristic Impedance:

Propagation Constant (y):
y=~NZ-Y=a+jp

where: a is the attenuation constant of the line in nepers/meter, and

B is the phase constant for the line in radians/meter.

\_ ) 2 g
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%0208 Ze%Se.4-0%0

Steady-State AC Model Solution

If the new expressions for characteristic impedance and propagation
constant are substituted into the equations for voltage and current,
then the general solutions for voltage and current on a
transmission line, as a function of position, x, are:

EX)=E'+E_= A -7 + A4,-¢7*

— ~ — . =yx . +y-x
fy=Tr-T-=he A
Z z

17
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Steady-State AC Model Solution

Iin ; RAx LAx RAx  LAx RAx  LAx . Jout

=CAx  GAx

Thus, the governing relationships for AC voltage and current on a
transmission-line as a function of position are:
47 4,

E(x)=E'+E- =4 -¢7"+4, -7 I(x)=T -1 "=
(x) x x 1 e 2 e ( ) x x Zo ZO
~, E' -~ E Z [R+jaL
Ir==2s I-=" 7z - |2 =JZ-Y =J(R+ joL) G+ joC)=a + j
e R A AN e JR+ jol )G+ joC) =a+ jf
Incident Power Reflected Power

Note that, if the characteristic impedance is assumed to be purely real, then the 5o _ g s _ (E)) P —ET = (E;)
power associated with the incident and reflected waveforms will be equal to: vz oz
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AC Transmission Lines
Part 11

Traveling AC Waves
on a
Matched Transmission Line

18
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Analysis of an AC-sourced Transmission-Line
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During the previous lecture, we began to analyze the steady-state
operation of a transmission-line that was supplied by a source
that was sinusoidally-varying.

Note that I7G is the phasor representation of the sinusoidally-varying
source voltage:

v (1) =~2 -V, -sin(w-t+¢,) volts.

General Solutions for an AC-sourced Line

And, to facilitate that analysis, we utilized a finite element model
of a transmission-line to obtain the following general solutions
for voltage and current on that line as a function of position:

E(x)=A -e7*+4,-¢'"" I(x)=

where: A, and A, were constants,
y was defined to be the propagation constant, and
Z, was the characteristic impedance of the line.
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Traveling Waveforms on a Transmission-Line
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Furthermore, since actual voltage at any position on a transmission-
line is the sum of any incident and reflected voltages seen at
that position on the line, it was determined that:

E(xX)=E'+E.=A -7 +4,-¢7*
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.7 defines the incident voltage on the line, and

'0
@,
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NN

,-e"”" defines the reflected voltage on the line.

Boundary Conditions and the General Solution

Zc . E(x)=E'+E =4 -e7" +4,-¢7*
Ve (E Zo || Ze 7 =NZY =R+ joL\G+ jaC) = a+ B
: Z(’:\E: R+ jol
! Y G+ joC

L [

Although both the propagation constant, y, and the characteristic
impedance, Z,, are defined in terms of the parameters that were
utilized within the model to represent the various losses associated
with the transmission line, the constants 4, and 4, within the
expression:

E(xX)=E +E_=A-e7 +4,-¢""

are a function of the boundary conditions of the system.
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Boundary Conditions and the General Solution
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E)=E'+E =4 -7 +4,-¢"*

Zc
Ve %% Zo || Zn  7=NZY =R+ joL) G+ joC) =a+ jf
: e 7\?7 R+ jol
! VY \G+jaC

T |

Thus, in addition to being functions of the parameters of the line,
the constants 4, and A, are also functions of the parameters of
both the source and the load that are connected to the line.

Which means, if we are given a system for which the source and
load parameters are defined, then we can utilize that information
in order to determine those constant values and, in-turn, the
specific solution for voltage as a function of position on that line.

Traveling Waveforms on a Matched Line

Assuming that the load impedance is matched to the characteristic
impedance of the line (Z,=Z,), then only an incident waveform
will exist because no reflection will occur (E;, =0) when the
incident wave reaches the receiving-end of the line.

Thus, the voltage on a matched line can be expressed as:

E(x)=E' =4,-¢7*
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Solving for the Constant A4,
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EJ———»E*—» (Zo) Zy=27

Given the expression:

E(x)=E =A4,-¢7*

the constant 4, can be determined by setting the expression
equal to a known voltage at a specific position on the line.

Solving for the Constant A4,

The phasor value of the incident waveform applied by the source,
at the sending-end of the line, can be determined from the
voltage-divider equation:

o e s Z
EO)=E =E.=V_- e
0--: -1, 2]

since the impedance experienced by that incident waveform is
equal to the characteristic impedance of the line.

22
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Solving for the Constant A4,

Et— (2)

i
€]
0
0

X

And if the incident voltage, EO*, at the sending-end (x=0) of the line
1s known, then the constant 4, can be solved as follows:

E(x)= A e

E(O) = E: = Al e r0) = Al 1 Note that, although a matched load
~, was assumed in order to simplify
Al = EO the problem, the method used to
obtain the constant 4; would still
return the same result even if the
load was mismatched (Z, #Z,).

Incident Voltage on a Transmission Line

3 +
Ve B¢ > Ft— ()

+

X

Thus, the expression for voltage as a function of position on a
matched transmission-line is:
E(x)=E'-e7*

where: E is the phasor value of the incident voltage applied to the
sending-end of the line, and

y is the propagation constant for the line.

Although the result appears to be simple, the true nature of this propagating waveform
is difficult to see unless the solution is broken down into its different components.

23
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Phasors and AC Voltages

Remember that a sinusoidal voltage:
e(t) :\/E-E-sin(a)-tﬂé)
can be expressed as an equivalent phasor voltage:
E=E-¢=E/¢

where: E isa complex number in “polar” form, such that
E is the RMS magnitude of the voltage, and
¢ is the phase angle of the voltage.

Note that, although phasor values may be expressed in terms of their “peak’ magnitudes,
RMS magnitudes will be utilized in this course unless specifically stated otherwise.

E0+. e-rx

Now, let’s take a closer look at the expression E(x)= Ej e,

~

E’ is the phasor value of the applied incident voltage, which can
be expressed as a complex number in polar form:

~

E'=E;Z¢°

and since y=a +jf is a complex number, we can also express
the exponential term e 7* as a complex number in polar form:

e—;/~x — e—(a+j,8)-x — e—a»xe—jﬁ-x — e—a»xl_ﬂ_x

where: e ** is the magnitude of the complex exponential, and
-p-x is the phase angle of the complex exponential.

24
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Et-erx

Thus, the phasor voltage, £(x), on the matched line is simply the
multiple of two complex numbers, £ and e””*, where:

E(x)=E e =(E;£¢°) (e 2~ p-x)= [Ej e “ 2§~ B-x

which can be converted back into its equivalent time function:

E(X)=E; - Lg°—f-x < |e(x,t)=~2-Ef -e** -sin(wt+¢°— f-x)

Based on this result, it can be seen that the attenuation constant, «,
affects the magnitude of the resultant voltage, while the phase
constant, f, affects the phase of the resultant voltage.

Incident Voltage on a Transmission Line

And given this sinusoidally-varying incident voltage that can either
be expressed as a function of time or by its phasor equivalent:

et (x,0)=~2- E; -e™* -sin(wt+¢°— f-x) volts, or

E'=E e’ =E - ™ Z¢°— f-x volts,

we can now begin to investigate the exact manner in which those
constants affect the wave as it propagates down the line.

25
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AC Transmission Lines
Part 111

Characterizing
the
Attenuation and Phase Constants

Characterizing the Propagation Constant

During the previous parts of this presentation, we created a model
of an AC supplied transmission line and derived the solution for
the incident voltage on a matched line:

[function of time]  e"(x,?) = V2 E;-e ™" -sin(a)z‘ +¢°—-p- x) volts,
[phasor equivalent] E'=E'-e7*=E - “*£¢°—f-x volts.

We will now investigate the manner in which the propagation
constant (y = a + jf) affects the wave as it travels down the line.

26
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Propagation Constant
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finite element finite element finite element

The following relationship for the propagation constant of a line
was defined in terms of the parameters (R, L, G and C) that were
included within the finite element model for a transmission line:

y=a+jB=vZ-Y =\|(R+ joL)G+ joC)

where: a was the attenuation constant of the line in nepers/meter, and

[ was the phase constant for the line in radians/meter.

Propagation Constant Example (Lossy Line)

Iin . . RAx  LAx | . Tout

finite element finite element finite element
Given a transmission line with the following parameters:
R=2.060/m, L =365nH/m, G=0.4uS/m, C=50pF/m
determine the propagation constant for the line if the source
supplying the line is operating at frequency f'= 400 MHz.

7 =+/(2.06+ j(27-400x10°)(365x10™))- (0.4x10™° + j(27 - 400x10°)(50x102))

= J(2.06+ j917.345)-(0.4x10™° + j0.125664) a =0.012027 T
=0.012072 + j10.737 B =10.737 sens
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Propagation Constant
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The propagation constant, y, of the transmission line determines
the manner in which a line’s physical characteristics affect any
wave that is propagating (traveling) on that line.

y=a+jp
= [ncident Voltage applied at the Sending-End

Incident Voltage ~. ~.
propagating on the line —»Ex = Eo e’
as a function of position |

term containing the Propagation Constant
that affects the incident wave as it travels
distance x down the line

Propagation Constant

: +
Ve ES > Bt— (Z0) Zx

+

X

L

And as discussed during the previous lecture, the real component
of the propagation constant, a, affects the magnitude of the
traveling wave, while the imaginary component, f, affects the
phase of the traveling wave.

y=a+jp
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Incident Voltage on a Transmission Line

aQ8 808
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For example, if the value of the incident voltage applied by a source
to the sending-end of a line is £, = E, Z¢°, then the phasor value
of the incident voltage on the line as a function of position can
be defined as follows:

e magnitude affected by a
Incident Voltage ~ ~
propagating on the line — E;r = E; N E(;r e Y/ ¢° — IB -x volts
as a function of position
phase affected by —ed

Incident Voltage on a Transmission Line

Similarly, if the phasor representation of the incident voltage:

Ef=E -7 =E - /¢°— -x volts,

is instead expressed as a function of time, the effects of the
attenuation and phase constants can also be seen:
e magnitude affected by a
Incident Voltage

propagating on the line — € (x,0)=~/2- E(;r e . sin(a)t + ¢o - ﬂ . X) volts.
as a function of position
phase affected by S —d
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Characterizing Attenuation & Phase Constant

aQ8 808
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Since the real and imaginary components of the propagation constant
affect different parts of the incident voltage expression, it is often
easier to investigate their effects individually.

Thus, in order to characterize the overall effect of the propagation
constant on a wave as it propagates on a line, we will begin our
discussion by first considering an incident voltage as it propagates
down a lossless line (a = 0).

Propagation Constant on a Lossless Line

Iin . ; LAx | . Tout

+

s

== Cax. © Vou

S
| finite element | finite element | finite element |
If a line is considered to be lossless, then both the resistance, R,
of the line’s conductors and the conductance, G, of the line’s
insulation will both be zero, resulting in:

= (R+ jwlG+ jwC Although both the resistance and the

Y \/( J )( J ) conductance terms in the model are
_ : . assumed to be zero (R =0, G = 0) for
- \/(0 +jol)(0+ jaC) a lossless line, the inductance, L,

- - 2 2 and the capacitance, C, terms in the
=4/ (] CUL)(] CUC) =] @ LC model will be non-zero regardless of

whether the line is lossy or lossless.
=0+ joVLC
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Propagation Constant on a Lossless Line
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Iin ; LAx : : Tout

+

ol

= Cax| { Vo

finite element finite element finite element

Thus, for a lossless line:

y=a+jf=0+jovLC

such that: the attenuation constant a=0

the phase constant p=wVLC

For a lossless line, the propagation constant will be purely imaginary,
resulting in an attenuation constant that is zero (o= 0) and
a phase constant (#) that is proportional to frequency.

Propagation Constant Example (Lossless Line)

Iin . ; LAx | . Tout

+

=

== Cax. © Vou

finite element finite element finite element
Given a lossless transmission line with the following parameters:
L =365nH/m, C =50 pF/m
determine the propagation constant for the line is the source
connected to the line is operating at frequency f= 400 MHz.
Viosstess tine = 0+ J oLC
a=

=0+ j(27-400x10°)/(365x10°°)(50x10"%) B =10.737
=0+ ,10.737 .

nepers

meter
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Attenuation on a Lossless Line

R
850,68

Since the general solution for incident voltage on a line is:

¢ (x,1)=~2-E} e -sin(wt+¢°— B-x)

if the line is lossless (a=0), then the magnitude of the incident
voltage will be constant (i.e. — it will not vary with position) since:

e =W 21 e e (x,1)=+2-E; -sin(wf+¢°—B-x)
magnitude does not vary with position x S |

Characterizing the Phase Constant

But, given the solution for incident voltage on a lossless line:
e (x,t) =2 E; -sin(wt+¢°— B-x)

how does the expression that contains the phase constant, £,
term within the sine function affect the wave as it propagates
down the line?
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The Phase of a Sine Function

v (9)]
ol
¥(30°)=0.5]<---- \‘
o H /
T 5 e 5 & B & 1&

-1

The phase (0) of the sine function: phase

y(8) =sin(0)

defines the progression of a function through its periodic variation.

As 0 varies from 0°= 360°, sin(0) varies from 0—>1->0->-1->0,
repeating again with every additional 360° increase in 0.

0 may also be defined in radians such that 360° = 2-& radians.

\_ ) 2 g
0%Q SeQes Je2e%eTs2e0
%0208 Ze%Se.4-0%0

The Phase of a Sine Function

v (9))
o
¥ (307 =0. 5]« \
o i / °
oo S0 /4 %, . s0 s 1 1% PR P

-1

When sine is defined as a function of time:
. Since o is defined in radians/
y(t) = Sll’l((l) t) wt provides an angle in radians.
the angular frequency, @, defines the rate at which the function
progresses through its periodic variation, such that the period, 7,
or length of time required to progress through one complete

cycle of the waveform is:

2
T= 2 seconds.
1)
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The Phase of a Sine Function

¢ < 4
%
o8

¥ (9)]
14

o2 (/f \ /
C ‘ [}
do o o o 0 50 30 s 180 210 240 270 300 o 360 aeg
1 c 4 21 raa

When a phase shift, ¢, is added into the function:

y(t) =sin(wt + @)

the sine function begins part way through its progression at the
arbitrary reference time = 0.

—14

But, why does the incident voltage e (x,?) = V2 E, -sin(a)t +¢°—-p- x)
expression have a “—f-x term” that is a function of position?

Incident Voltage at the Sending-End

¥ (©)
1

= 3% \ /
o ;]
— T @ B B OB o o @ 6 Shem
T G 27t raa
_]

If, as previously derived, the phasor value of the incident voltage
applied by the source to the sending-end of the line (x = 0) is:
- -~ 7 ~
EO :E+:V . 0 —) E;:EJrZ © VOltS,
O)=E, =V; [ 7o+ ZOJ 0 L9

then the time function that describes the incident voltage at the
sending-end of the line is:

e (1)=~2-E; -sin(wt+¢°) volts.
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Incident Voltage on a Transmission Line

But, as the source is applying the incident voltage:

' (t)=~2-E -sin(wt +¢°) volts.

to the sending-end of the line, the instantaneous voltage (and the
associated current waveform) seen at the sending-end begins to
propagate down the line at a finite velocity.

And since the voltage varies sinusoidally, it creates an incident voltage
on the line that varies sinusoidally as a function of position.

\_ ) 2 g
0%Q SeQes Je2e%eTs2e0
%0208 Ze%Se.4-0%0

Incident Voltage on a Transmission Line

7o e(x,t) :\/EEO+ e sin(wt +¢°— B-x)
VG Zr ZR = Zo
X i
\_ L
If the incident voltage on the line hthen the llll}stant_apeous voltage
is plotted as a function of position shown at this position at time t,...
at some arbitrary time ¢ ... was created one period of time, 7, earlier than the voltage
(as shown in the above figure) that is being applied to the sending-end at time t,.

Based on this concept, the incident voltage seen at some distance, x,
from the sending-end of the line is the direct result of some voltage
that was applied by the source to the sending-end of the line at an
earlier point in time.
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Phase of the Incident Voltage

e(x,0)=~2-E7 -e™** -sin(wt +¢°— f-x)

0T SO
- wE
SRS
N
Q

And since the phase of the voltage is directly related to the time at
which that voltage was initially applied by the source to the
sending-end of the line, then compared to the voltage being applied
to the sending-end at some reference time #,, any voltage that was
created earlier in time should have a phase that is smaller in value.

In other words, in order to account for the fact that the voltages seen
further down the line were created earlier in time, the phase of
those voltages decreases as distance x increases.

Phase Constant

7o e(x,t) :\/EEO+ e ~sin(a)t+¢°—/i'~x)

Thus, the phase constant term, —fx , in the expression:
e(x,1)=~2-E; - -sin(wt +¢°— - x)

accounts for the decrease in the phase of the waveform as a as
the distance x traveled from the sending-end of the line increases,
which is a direct result of the finite propagation velocity of the
wave on the line.
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Phase Constant

phase

Ze e(x,0)=~2-E7 -e™** -sin(wt +¢°— f-x)

Phase constant, f#, can thus be related to the phase velocity, v,
of a wave that is propagating on a line by observing the change
in the position of a constant point of phase as time increases.

And since the phase of the incident waveform is value “inside” the
sine term when the waveform is expressed as a time-function,
a constant point of phase occurs when:

(a)t +¢°-f- x) = constant

\_ ) 2 g
0%Q SeQes Je2e%eTs2e0
%0208 Ze%Se.4-0%0

Phase Constant

7o e(x,t) :\/EEO+ e ~sin(a)t+¢°—ﬂ~x)

By taking the derivative w.r.t. time of both sides of the expression:
(wt +¢°— B x) = constant
we get:

%(wt +¢°—B-x)= %(constant)

which can be simplified, as shown on the next slide.
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Phase Constant

Za e(X,f):\/iEJ et ~sin(a)t+¢°—ﬂ.x)

Simplifying

d o d
the expression: 7 (@t +¢°—B-x)= Z (constant)

.' ' {
Cop O g
$89250 2 96%¢ ¢ -5

Phase Constant

Zc e(xJ):\/E-EJ-e’“”‘~sin(a)t+¢°—ﬂ~x)

P s the phase velocity, v,, which is the velocity of a constant
d point of phase on the line (i.e. — the velocity of the wave),
allowing for the expression to be rewritten as:

o-p-v,=0
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Phase Constant

7. e(x,0)=~2-E7 -e™** -sin(wt +¢°— f-x)

And based on the equation:

w—pf- v, = 0
it can be seen that phase velocity: v, =%
or that the phase constant: p= Vﬁ
P

Wavelength A vs. Phase Constant

7o e(x,t) :\/EEO+ e ~sin(a)t+¢°—ﬂ~x)

Note that the wavelength, A, of the wave on the transmission line
can then be expressed in terms of the phase constant as follows:

ﬂ_£:27z~f: 2 _2_72' - 222_72
2B (VJ 2 B
f
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Characterizing the Attenuation Constant
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X

Now that we’ve characterized the phase constant by relating it to the
decrease in the phase of a wave as it propagates on a line due to
the finite propagation velocity, now lets go back and take a look at
the effects of the attenuation constant on a lossy line.

e magnitude affected by a

Fj; - E: e’ =E, e Lg°— f-x volts

Attenuation on a Lossy Line

For a practical (lossy) line, the attenuation constant will be
greater than zero (& >0), resulting in an exponential decrease
in the magnitude of the incident wave as it travels down the
line due to the exponential decay function e=%",

El=E;-e“
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Attenuation Constant o

+ _ p+  _—ax
Zc Ex _EO "€

The attenuation constant (&) for a line can be characterized in
terms of the decrease in magnitude of a wave as it travels from
position x; to position x, on the line. If expressed as a ratio of

voltages: . v g2 a2
Exz _ E() e _ € __—a(x2-x1) _ e—an
+ + —axl ~ _—axl -
E, E;-e e
then: a is the attenuation constant in nepers/meters, and

Ax 1s the distance traveled in meters.

\_ ) 2 g
0%Q SeQes Je2e%eTs2e0
%0208 Ze%Se.4-0%0

Characterizing Nepers

Note that the term adx, which has the units of nepers, defines
the rate of attenuation of the waveform’s magnitude as the
wave travels a specific distance Ax down the line.

You probably haven’t heard of the term nepers before, but there
is another term associated with attenuation that you probably
have heard, and that term is decibels.
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Decibel (dB) Attenuation

- — O -

Decibel attenuation is utilized to define the decrease in the power
of a waveform (signal) at one point in a system compared to the
power of a waveform (signal) at another point in the system.

0= =0=
...'...'-m
030.,8"

Specifically, decibel attenuation is defined in terms of a logarithmic
ratio of two powers:

Per
=-10log,, P—f

x1

dB

atten

If x=1log,,4 Then 4=10"

Why Logarithms & Decibel Attenuation

dB

atten

P
:—IOIOgloF2

1

There are many types of measurements that can result in a dataset
that covers an extremely wide range of values.

For example, the sound pressure amplitude of a jet at takeoff can
be 3,000,000 times greater than the sound pressure amplitude of
the quietest sound that a human can hear.

Examples of other measurements that can result in an extremely
wide-ranging dataset include earthquake intensity (Richter scale),
RF signal strength, and pH balance.
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Why Logarithms & Decibel Attenuation

< <
O™
O

P
atten = _1010g10 Fj

dB

Although simultaneously dealing with very large and very small
numbers can be problematic, often making it very difficult to
comprehend important details contained within the data, when
expressed in terms of decibels (logarithms), the wide-ranging
dataset can be is compressed into something that is much more
manageable.

For example, the aforementioned sound pressure amplitudes, that
can differ by a factor of 3,000,000 from small to large, will only
span the range from 0 to 130 when expressed in decibels.

Why Decibel Attenuation

P
4B,y =~10T0g;, >

1

atten

In high-frequency systems, there are many devices for which the
power loss that occurs in a wave as it passes though the device is
based on a percentage of the initial waveform’s power (and not an
exact power value), making them suitable for dB characterization.

For example: If “device A” cuts the signal power in half, then:

Note that, although the Py =2W == _ m— P,=1W

exact power loss value is Practical (lossy)
different in each case P=10W i _ — P, =5W transmission lines
(1Wvs. 5W vs. 4mW), function in this manner.

P, is always %2 (50%) of P;,. P = 8mW _ P. = 4mW
1= —_— —_— 0=
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Characteristics of Decibel Attenuation

 — O

And if the power, P,, of a signal as it exits a device is always %2 of
the power, P,, of that same signal as it was entering the device,
then the decibel attenuation of the signal caused by the device is:

1
~ —10log,, 22 = ~10log,, 211 = ~10log,, - ~~10(~0.30)=|3dB
R P 2

1 1

dB

atten

3dB attenuation is equivalent to a decrease or loss of power by a factor of .
This is worth memorizing because it is a commonly referenced value.

Characteristics of Decibel Attenuation

» — O -

It turns out that every time P, is decreased by an additional factor
of 72, the decibel attenuation increases by +3dB.

P, | dB Attenuation
P 3dB
TP 6dB
3B 9dB
=B 12dB
+ P, 15dB
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Characteristics of Decibel Attenuation

- — O -

It also turns out that every time P, is decreased by a factor of %,
the decibel attenuation increases by +10dB.

P, | dB Attenuation
+h 10dB
w5 P 20dB
7w B 30dB
o000 1 40dB
Too005 £ 50dB

Characteristics of Decibel Attenuation

But, if P, = P, (i.e. — there is no loss), then the decibel attenuation is:

dB,,.. =—10log,, % =—10log,, % =—10log,,1~-10(0)=0dB

1 1
Intuitively this should make sense because, if decibel attenuation

relates to a percent decrease in power, 0dB attenuation relates
to a 0% decrease, and thus P, must equal P,.
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Characteristics of Decibel Attenuation

- — O — -

Note that, if original power, P,, and decibel attenuation are both
known, the remaining power, P,, can be calculated as follows:

=-10log,, £

dB =
§

atten

dB P,

atten — 1

“10 ng

and since 4=10" if x=1log,, 4

dB

atten

. b

1

P
=log, —=
10 gloP1

dBytien dB

=10 10

atten

P,=F-10 1

Decibel Calculation Examples

P,=2.6W — (A —> P,=0.4W

If the signal power entering an
attenuator is measured to be 2.6 W,
and the signal power exiting the
attenuator is measured to be 0.4W,

Determine the decibel attenuation.

P
=—1010g10?2

1

0.4
=-10log,,—
Eio 26

dB

atten

=—10log,,(0.15385)
=-10(-0.813)=|8.13dB

P, = — (YIRS — 7.

If the signal power entering a 12dB
attenuator is measured to be SmW,

Determine the signal power that will
exit the attenuator.

|||||

&)
=(5mW)-10'"°
=(5mW)-10""?
=(5mW)-(0.0631)
=0.3155mW
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Relating Nepers to Decibels

Assuming that an incident voltage is propagating on a transmission
line whose characteristic impedance is purely real, then the power
associated with the incident waveform, P _*, at position x on the
line is equal to:

2
+ +
Incident P+ _E+ [+ _E+ Ex . Ex
Power X - X . X - X - -
ZU o

\_ ) 2 g
0%Q SeQes Je2e%eTs2e0
%0208 Ze%Se.4-0%0

Relating Nepers to Decibels

And since incident power, P_*, at position x is proportional to (E,*)?,
decibel attenuation can also be defined in terms of a logarithmic
ratio of voltages: .

Eg

2
f)+ Z E‘+ E+
08,1, <1005, = -1010g, 2o —-1010g, 52| |20, 22

x1

x1 x1 x1

Z

o

Note: log,,a” =blog,, a
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Relating Nepers to Decibels

If the (neper) ratio of voltages
is substituted into the —. e = dB,,, =—20log,
expression for decibels: i xl

+
EX2
+

Then the following relationship ~ dB,, =—20log,,e "
between nepers and dB
can be derived:

atten

=aAx-20log, e

@

@,
o
os]

=aAx-8.686 =|Nepers-8.686

Thus, neper attenuation is related to decibel attenuation as follows:
Nepers = 4B =0.11513-dB
8.686
dB =8.686- Nepers

Note that, since decibel attenuation information for standard cable types is provided in Table 1.3,
that information can be used to determine the attenuation constant, , for those cable types.
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Determining the Propagation Constant y
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Although we originally derived the expression for the propagation
constant, y, from the parameters that composed the incremental
model of the transmission line:

y=a+jB=vZ-Y =\|(R+ joL)(G+ jaC)

in the vast majority of cases, you will not have knowledge of the
values of those parameters.

Determining the Propagation Constant y

Iin . . RAx  LAx | . Tout

But, instead of trying to determine the value of the propagation
constant, y, from the parameters, it turns out that you can solve
the individual components & and £ in the expression for y = a + jf,
for a variety of common types of coaxial cables, directly from the
information provided in Table 1-3 of the textbook.

Coaxial Cables
AWG . # Nom. Nom. Nom. Nom. Nom. Attenuation | Standard
RG # Material Insulation Shields Jacket 0.D. Tmp. Vel. Of Cap. per 100” Spool
(inch) (Ohms) Prop. (pF/ft.) MHz dB Lengths
100 3.0
1 |20 | Poly- oy Black e o0 o5 | 66% | 160 | a0 | as | 100
Copper | ethylene Vinyl 400 6.0 500
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Determining the Attenuation Constant «
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" Coaxial Cables
“ AWG 4 Nom. Nom. Nom. Nom. Nom. Attenuation | Standard
"‘ RG # Material Insulation Shields Jacket 0.D. Imp. Vel. Of Cap. per 100” Spool
“. (inch) (Ohms) Prop. (pF/ft) MEL dB. | Lengths
I 100 3.0 I
() o | 20 Poly 1| Bkl 0 | 95 | e6% | 160 | TS 100,
Copper | ethylene Vinyl 400 6.0 500

Determine the attenuation constant « for RG 14/U cable at 100MHz.

= 3.08 -L:0.03ﬁ-3.281&=0.09843 ds

atten *~ 100feet 100 foot meter meter

dB

Thus:

o S =0.09843-48-.0.11513 5= = | 0.01133 2=

meter meter meter

Determining the Phase Constant 8

Coaxial Cables
AWG “ Nom. Nom. Nom. Nom. Nom. Attenuation | Standard
RG # Material Insulation Shields Jacket 0O.D. Imp. Vel. Of Cap. per 100” Spool
C (inch) (Ohms) Prop. (pF/ft.) MHz dB Lengths
20 Poly- Black 100 3.0 100
14/U 1 ack | 420 | 95 |[ee%]| 160 | o | as ’
Copper | ethylene Vinyl 400 6.0 500

Determine the phase constant £ for RG 14/U cable at 100MHz.
Nom. Vel. of Prop.=66%
Therefore:

Vp = (066) C= (0.66) . (3X108) = 1 98X108 meters

second

6
ﬂ:ﬁz 2 100x180 _ [3.173 2
v, 1.98x10

50



=
29
@,

_
=
e

0

4
=) 3
=)

.'
st
S

Determining the Propagation Constant y

Coaxial Cables
AWG ) 4 Nom. Nom. Nom. Nom. Nom. Attenuation | Standard
RG # Material Insulation Shields Jacket 0.D. Imp. Vel. Of Cap. per 100” Spool
(inch) (Ohms) Prop. (pF/ft.) MEL dB. Lengths
I 100 3.0 I
1au | 20 Poly 1| Black |50 | os 160 | 20 [ 43 100,
Copper | ethylene Vinyl 400 6.0 500

Based on the previous results, the propagation constant y for
RG 14/U cable at 100MHz is:

y=a+jB=0.0113315 22 | ;3 173 mims

meter meter

which can be used to solve for the value of the incident voltage
as a function of position provided that the value of the incident
voltage E," applied to the sending-end of the cable is known:

E(x)=E'-e7*

AC Transmission Lines
Part IV

Traveling AC Waves
on an
Unmatched Transmission Line
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Steady-State Voltage on a Transmission Line

Iin ; RAx LAx RAx  LAx

=CAx  GAx

In part I of this presentation, we developed an incremental model
for a transmission-line and then utilized that model to derive the
general solution for steady-state voltage on the transmission
line as a function of position, x:

E(x)=E +E. = A -7 + A,-¢"*

the first term of which defines the incident voltage on the line,
while the second term defines the reflected voltage on the line.

Solving for the Constant A4,

In part II of this presentation, we considered the case of a matched
transmission-line in order to isolate the first term in the general
solution that related to the incident voltage on the line:

~

+ —yx
E =4 -e

and determined an expression for the constant 4,, where:

A4 = E; (the incident voltage applied to the sending-end by the source)
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Solving for the Constant A4,

If we substitute this result into the equation for the general solution
of steady-state voltage on the transmission line as a function of
position, x, we are then left with an equation that still contains the
constant A4, in the term that defines the reflected voltage:

E(x)=E +E. = E'-e7* + d4,-¢"

In order to solve for this constant, we will now consider the case of
an unmatched transmission line (Z, # Z ).

Reflected Voltage on an Unmatched Line

If the load impedance is not matched to the characteristic impedance
of the line:

Z,*Z,

then a reflection £, will occur when the incident wave reaches
the receiving-end of the line, such that:

E,=E;-T, where I,
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Reflected Voltage on an Unmatched Line

Zy#Z

0 L

And if a reflection occurs, the reflection term £ in the solution:

E(x)=E' +|E_|=E"-e7* +|4,-¢"*

will no longer be zero, allowing us to solve for the constant 4, in
the same manner for which we determined the constant 4,.

Note that the reflection produced by the unmatched load will experience the same propagation
effects as it travels in the “-x” direction back towards the sending-end of the line.

Reflected Voltage on an Unmatched Line

Ly#Z

L

Since the applied incident waveform must travel distance L to reach
the receiving-end of the line, the value of the incident wave that
reaches the receiving-end (x=L) is:

o+ _ o+ vl
Ep=E;-e

resulting in the creation of a reflected wave at the receiving-end
that is equal to:
E,=E; T,=E; T,-e’"
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Solving for the Constant A4,
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20
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Zy#Z

0 L

By substituting x=L into the general solution for reflected voltage
and setting it equal to the known value of the reflected voltage at
the receiving-end that we defined in terms of the incident voltage:

- _ L o oL This equates to the
ER - A2 € _EO FR € incident wave applied

. to the sending-end
the constant 4, can be determined as follows: after it travels to and

.“ ~, . reflects off the load.
—y-
o PREEIELY SRS
“ 2 = oL = Lo Lr

Steady-State Voltage on an Unmatched Line

Now that constants 4, and 4, are known, the steady-state solution
for voltage on a transmission-line as a function of position, x, is:

E(x)=E; +E, = Ey-e7" + E; -T-e”"" .7

where:  E; is the phasor value of the sending-end incident voltage,
I'; is the value of the reflection coefficient due to the load,
7 1s the propagation constant for the line, and
L is the length of the line.
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Steady-State Voltage on an Unmatched Line

e
—

S
{ &
e

X i
0 L

Now that constants 4, and A4, are known, the steady-state solution
for voltage on a transmission-line as a function of position, x, is:

E(x)=E; + E, =|E; -e7"|+|E; -T-e?"" e

Keep in mind that the terms shown in this equation define the incident and reflected voltages
when expressed as their phasor equivalents, and that the incident and reflected voltages are
actually sinusoidally-varying waveforms that are traveling in opposite directions on the line.

Steady-State Voltage on an Unmatched Line

Based on the previous solution, the steady-state voltage at the
sending-end of the line (x=0) is:

E.=E)= E"-e7° + EF.T, .27t .00
S 0 0 R

\u

The first term is the incident voltage that the
source applies to the sending-end of the line.

The second term is the result of the sending-end incident voltage after it travels to the
receiving-end, reflects off the load, and travels back to the sending-end of the line.
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Steady-State Current on an Unmatched Line

aQ8 808
858..0

The steady-state solution for current on a transmission-line as a

“‘ function of position can be defined in terms of the voltage as:
““ = 27L
s Ty B EiTye™rte
QL Z, Z
“‘ since: _
~  E E
I(x)=1-1 =—-—=
ZO ZO

In-turn, the steady-state for current at the sending-end of the
line (x=0) is:

E; Ej T,
s Z Z

o o
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Impedance on an Unmatched Line

aQ8 808
858..0

Zy#Z

L

Since impedance on the line at position x can be defined as the

“. ratio of the steady-state voltage and current at position x:

(1D

:‘:‘ 200 E(x) ~ EO+ e’ 4 E(;r T, e Ml Lot ) . 1+1_,R Lo 27 L)

:‘: T E e  E Tpeter |7 1-T-e 0
Z, Z,

Input Impedance of a Transmission-Line

The result:

14T, - e 27 ™

1-T,-e 27t

can be utilized to determine an expression for the steady-state
(sending-end) input impedance of the line (x=0):

14Tt
in(x=0) — %o’ 2L
1-T;-e

Z(x)=Z2,-

Z
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Input Impedance of a Transmission-Line

3
X=0
0

The input impedance of the line :

is often of interest because it defines the impedance that the
source experiences under steady-state conditions, and thus can
be used as an equivalent impedance in place of the “line-load”
combination, allowing a phasor-analysis of the system’s operation
from the perspective of the source.

Input Impedance of a Transmission-Line

In other words, the input impedance of the line is equal to the ratio
of the steady-state, sending-end, voltage and current:

£
I
and as such, if the “line-load” combination is replaced by an

equivalent impedance Z,,, then the source’s operation can be
analyzed by means of a phasor analysis of the simplified circuit.

Z

in(x=0) —
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Input Impedance of a Transmission-Line

Z

For example, if the input impedance of the line is utilized, then the
steady-state current can be solved using Ohm’s Law and the
steady-state voltage can be solved from a voltage-divider equation:

~ V. -~ o~

y4
I = E, =V, —"—
Zo+2Z, Zs+2Z,

This also allows for the use of other circuit theorems, such as the maximum power transfer theorem,
which states that a source will deliver maximum power to a load if the load impedance is equal to
the (purely real) series impedance of the source.

Reflection Coefficient vs. Load Impedance

The reflection coefficient, I, of the load was defined as the ratio
of reflected and incident voltages at the receiving-end of the line:
— E; _ ZR _Za
Ei Z.+Z,
From this, the load impedance, Z,, can be defined in terms of
reflection coefficient: T
R

1-T,

1—‘R

Z,=7,-
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Reflection Coefficient on a Line

In addition to defining an impedance at any point on a transmission
line as the ratio of the steady-state voltage and current at that
position, a reflection coefficient can also be defined as a ratio of
the reflected and incident voltages at that position:

r, = ?j

X
even though the actual reflection occurs at the receiving end.

Input Retlection Coefficient I';,

Zc E(x):EJ,e*yvx_'»l—\R.Eg‘e ./YL‘eJr/

L

And based on this concept, an input reflection coefficient, I';,,
can also be defined as the ratio of the reflected and incident
voltages at the sending-end of the line:

1_‘. _ ?0_ _ Eg -F{i-e_Z-}/-L _ 1—* -e_z,y.L

m E(;r E(;r R

[, =T,
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Reflection Coefficient vs. Input Impedance

Since:

the expression for the input impedance can be rewritten as:

S B0 R 14T,
T I=Te T 1T,

Reflection Coefficient and Impedance

L

Note that the expression for input impedance is similar in form to
the expression for load impedance (in terms of reflection coefficient):

14T, 1+T
in o l_r o I—FR

in

Z,=Z

This similarity, along with the relationshipT,, =T, -e """ , provides
the foundation upon which a graphical solution for impedance
on a transmission-line using a Smith Chart will be derived™.

| * - in an upcoming lecture |
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Example Problem

Given a 5.5 meter section of RG 14/U supplied by a source that
has the following characteristics:

~

V, =6£0° volts Z;=95Q f =100 MHz

determine the steady-state voltage at the sending-end, E <, the
steady-state voltage at the receiving-end, £, and the input
impedance of the line, Z, , if the line is terminated by a load
having the impedance Z, =200 Q) .

Example Problem

¥, =620° volts
Z,=95Q
f =100 MHz
Coaxial Cables
) AWG . “ Nom. Nom. t\lum Nom. Nom. Allcn\{alum Standard
RG # Material Insulation Shields Jacket ((i)“.gl) ((I)‘r‘\]‘i) \:r]u;?f (;SFQ/?‘[) M”};erIOO - LSC}:‘Z?}I‘S
U | Copper | ctyiene ||| Vinyt | 422 ooul| 160 | | = | s
For RG 14/U, the charaeteristic impedance and velocity are:
Z,=95Q v=1%-c=(0.66)-(3x10%) =1.98x10° metes
thus wavelength at 100MHz is:
v 1.98x10°
=—=———"2-=1.98 meters
f 100x10
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"“‘ A=1 .98Zr:1eters v =1.98x10" meters
““‘ 7., =6£0° volts T ._RG14/U

0 Z,=95Q Ve : ~ Zo Z,=200Q
.“ £ =100 MHz | U Z,=950

Keep at least 4

Coaxial Cables P . .
“ WG " Nom. | Nom. | Nom | Nom. | Nom. Attenuation | Standard significant-digits of
‘ RG # Material Insulation Shl;llk Jacket 0.D. Imp. Vel. Of Cap. per 100” Spool accuracy throughOth

“ | i Ginch) | (Obms) | Prop. | (pF/ft) | Mz dB_| Lengths | calculations!

() Ul 20 Poly- Black . o0 T30T 100, all calculations!
‘ 14 Copper | ethylene ! Vinyl | 420 % 6% 100 400 | 60 500

() . .
00 For RG 14/U, the propagation constant y is:

@ S = (3-0—108?%1)'(ﬁ)(S.ZSI%)-(O.IISIB Nepes) _ (01133 Nerers

meter dB meter

B 2_7r _ 2rrad
A 1.98 meters

B = 31738 4 jB=0.01133 22 4 ;3173 mdns

meter meter

Example Problem

A=198 meters v=198x10° meex =54 j8=0.01133 222 ;3 173 sadions

‘meter meter

Zs
]

¥, = 620° volts

z,=950 Ve |z« z,=2000

f =100 MHz
i L L=5.5meters
) . . . :

A “ The reflection coefficient, I, due to the mismatched load is:

(D)

Note that although the resultant reflection
:“‘ _ Z R Z o __ 200 - 95 _ 5 6 coefficient is a real number, the reflection coefficient
R ™ - - can be complex if the load impedance has a reactive

““ ZR + Zo 200+95 component (inductive or capacitive).

Q. ~
““ and the incident voltage applied to the sending-end, E , is:

‘. i+ " Zo o 95 o

Ef =V, .| —2o— |=(6£0°)-| ——— | = 3£0° volts
Zo+Z, 95+95
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Example Problem

A=198meters v=1.98x10° =L =1 j8=0.01133 Nepers 3,173 mdians

xxxxxxx

¥, =620° volts .. RGI14/U
~ + F—
Z,=95Q Ve = oy
0 X
/=100 MHz _Z,=95Q

EJ =300 vvolts ¢————X L L=5.5meters

. . - ~ ~ 2L since x = 0 at the
Thus, given the equation: E;=FE; +T,-E; -e"” sending-end of the line

the steady-state voltage at the sending-end of the line, ES , 18:

ES _ E(O) _ (3400) n (0.356).(3400)_e—z-(om133+13.173)»(5.5)
=(3£0°) + (0.356)-(3.£0°)-(~0.8307 + j0.2990)
=(3£0°) + (~0.8871+ j0.3193)
=(2.113+ j0.3193) = (2.14.£0.150tad) = (2.14.£8.6°) volts

Example Problem

A=198meters  v=198x10" mm =gt jB=0.01133 J75 + j3.173 s
¥, =620° volts
Z;=95Q Ve
/=100 MHz
E; =320°volts P — L L=>5.5meters

Note that the steady-state current at the sending-end of the line, 7 , is:

=+ - T+ T+ 2L
E; E, E Tk e

e A A
_ (3£0°)  (-0.8871+ j0.3193)
95 95

= (0.03158.£0°) — (~0.00938 + j0.00336)
= (0.041- j0.00336) = (0.041£—0.082rad) = (0.041£—4.70°) amps
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) A=198meters v=198x10° B 5 _ gy jA=0,01133 2 4 73173 mdis
"“‘ y 2
““‘ 7, = 6.20° volis =, RG14U
o z,=950 Ve . L
.“ £ =100 MHz 7 Z9s0
“ E; =320°volts X L L=>5.5meters
““ . . ~ ~ ~ x = 5.5 at the
O And given the equation: E(x)=E;  -e 7+, -E -e 7" "™ | receiving-end
() 0 R Lo
of the line

the steady-state voltage at the receiving-end of the line, E 2> 1S:

ER — E(SS) — (3400).67(0.01133+j3.173)(5.5) + (0.356)_(3400).e*Z‘(O.Ol133+j3.173)<(5.5) .e+(0.0|]33+j3.173)(5.5)
= -(0. + jO. + (0. . -(=0. + jO. -(0. - jl.
320°)-(0.1615+ j0.9256 0.356)-(3£0° 0.8307 + j0.2990)-(0.1829 — j1.0485
— (0.4845+ j2.777) + (0.1725+ j0.9885)
— (0.6570+ j3.765) = (3.822./1.398rad) = (3.822./80.10°) volts

Example Problem

A=198meters v=198x10" ™y =4 j5=0.01133 220 } ;3 173 mdins

meter

¥, =620° volts

7 .-950 Z,=200Q
o I, =0.356
f =100 MHz
EO‘ =3/0°volts g————————X L L=5.5meters

Additionally, the input impedance of the line, Z,,, is:

in >

2yl 2001133+ /3.173)(5.5)
n=2, '% = (95)' 1+(0.350) 372. 0.0113343.173).
1-T,-e™” 1-(0.356) - ¢ 200133 NG
(95)' 1+(0.356)-(—0.8307 + j0.2990)
1-(0.356)-(-0.8307 + j0.2990)

= 50.65+;12.0Q
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Example Problem

Zs T

~ ]
Vs =6£0° volts
Z;=95Q Ve E| [lze  z,=5065+/1200
/=100 MHz

Also note that, if the input impedance of the line is utilized, then
the steady-state current can be solved using Ohm’s Law and
the steady-state voltage can be solved using a voltage-divider:

75 — VG ES — VG . Z in
ZG+Zin ZG +Z,‘n
6£0° 65+ 12.
_ _ (6400) 50 65+]120
95+(50.65+ /12.0) 95+(50.65+ /12.0)
= (0.041£-4.70°) amps = (2.144£8.6°) volts

* - the same as previously solved

Impedance Characteristics on a Lossless Line

For a lossless line, the propagation constant is purely imaginary:
y=a+jp=0+jp=jp
Based on this, the input impedance expression can be rewritten as:

A4p-e?7 1+ (0,4 -251L)

" =Ty e Pt T 1 (T £ ~2BL)
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Since the value of a complex number expressed in polar form
repeats with every 2n radian (or 360°) decrease in angle, the
value of the input impedance of a lossless line:

1+ (D, £-2pL)
n T (T, £ -2pBL)

must repeat periodically whenever an increase in length causes
the angle -2 to decrease by 2 radians.

Impedance Characteristics on a Lossless Line

Thus, the input impedance of a lossless line will periodically repeat
whenever the length of the line increases by %2 wavelength:
I -2n  -2n A

—_2B8L=-21n = - -
28 -2.2 2

1+(T,£-2BL)
n T 1T, £ -2pL)
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Impedance Characteristics on a Lossless Line

L

Furthermore, if the length of a lossless line is an integer multiple of
%2 wavelength, then the input impedance of the line will equal to
the load impedance (independent of characteristic impedance):

o, 2Bl 1422, 14 ([D4-2m) o, 1+([DL0)
m (ML =2BL) 1=(TpL =222y 0 1—(T,Z-2mn) ° 1—(T,£0)

A2

R

Z, =Z, if L:wg-

m

Standing Waves on a Transmission Line

Whenever a steady-state AC voltage is applied to an unmatched
transmission-line, the resultant voltage on the line is equal to
the instantaneous sum of the incident and reflected voltages:

N T
Ex)=E +E;
=E; e+, Ef 77" e

Note that the waveforms shown above result from a SC load (Z; = 0Q).

69




025, 5%aY= %
92075242 8"
8% .0-0%6

Standing Waves on a Transmission Line

Yo\

standing
wave pattern

L

It turns out that the RMS magnitude of the voltage at any position
on the line is constant, the forming a standing wave pattern.

The standing wave pattern can be seen by plotting the RMS
magnitude of the voltage as a function of position. Note that the
pattern repeats periodically with every Y2-wavelength change
in position on the line.

Voltage Standing Wave Ratio (VSWR)
.

The Voltage Standing Wave Ratio (VSWR) is defined as the
ratio of the magnitude of the maximum RMS voltage in the
standing-wave pattern over the magnitude of the adjacent
minimum RMS voltage.

|Emax
VSWR ="——
|Emin
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Voltage Standing Wave Ratio (VSWR)

el A aaad

=

L v - 3

The magnitude of the RMS voltages will be at a maximum
whenever the incident and the reflected waves are in-phase,
and at a minimum whenever the incident and the reflected
waves are out-of-phase by 180°.

Thus:

|E | =|E” =|E*

+‘E“ E

min

-|E]

max

Voltage Standing Wave Ratio (VSWR)
.

The expressions for |E,,,,| and |E,,;,| can be substituted into the
relationship for VSWR with the following result:

1+ £
| |ET +‘E" E'| 1+[r|
VSWR = = = =
|Emin E+ _‘E_‘ 1 E” 1_|l—‘|
_ o
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Voltage Standing Wave Ratio (VSWR)

el A aaad

=

e Yl R B S 4 e

Zy#Z,

Note that the following expressions:

_ VSWR-1
VSWR +1

1+|FR| — |FR|

VSWR = o) S

holds true only if the line is assumed to be lossless, such that
the magnitudes of the incident and reflected waves are constant.
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