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ECET 3410
High Frequency Systems

AC Sourced

Transmission Lines
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The concept of a transmission line was introduced during the 
previous presentation, with a focus on both the transient and 
steady-state operation of a lossless transmission line that was 
being supplied by a DC source that was initially energized at 
some arbitrary point in time. 

Review
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Based on that discussion:

 When a DC source is initially connected to the sending-end       
of a line, an initial voltage potential, V+, will appear across    
the sending-end, and in order to build-up the charge-difference 
required for that voltage potential to exist, an initial current, I+,
will begin to flow into the line, the magnitudes of which can be 
determined based on both the source’s electrical parameters 
and the characteristic impedance, Zo, of the transmission line. 
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Based on that discussion:

And, as current continues to flow into the sending-end, the charge 
that previously entered will be pushed further down the line,   
resulting in what appears to be current flowing further and 
further down the line.  And since the portion of the line across 
which a charge-difference exists will increase as the current 
pushes further down the line, a voltage potential will also appear 
to simultaneously move down the line with the flow of current.  
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Based on that discussion:

 Thus, the concept of traveling waveforms was first presented in 
the form of an incident voltage, V+, and an incident current, I+.

Note that, for a lossless transmission line, the rate at which the 
voltage and current waveforms appear to travel down the line 
(i.e. – velocity) was a function of the material properties of the 
insulating material that surrounded the conductors.
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Based on that discussion:

 When the incident voltage and current reach the receiving-end 
of the line, two things can happen depending on whether or not 
the load impedance is matched to the characteristic impedance:
▪ The energy associated with the traveling waves will be 

delivered to the load, or
▪ The energy associated with the traveling waves will reflect 

off of the load and travel back towards the sending-end.
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Based on that discussion:

 If the load is matched to the characteristic impedance of the line:

then all of the energy associated with the traveling waves will 
be delivered to the load, and steady-state operation will be 
achieved such that the entire line will be charged-up to the value 
of the incident voltage, and the incident current will be flowing 
through the entire line.
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Based on that discussion:

 But, if the load is not matched to the impedance of the line:

then a portion of the traveling waves’ energy will reflect off 
of the load and travel back towards the sending-end.

Note that the reflected energy is characterized in terms of a 
reflected voltage, V–, and a reflected current, I–.
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Based on that discussion:

 The amount of the wave that reflects off of the load can be 
determined based of a reflection coefficient, ΓR:

 such that: and
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Based on that discussion:

And once the reflected waveforms are created, they will travel 
back towards the sending-end of the line.

Note that, as the reflected waves travel from the receiving-end, 
the voltage and current on the line will change since:

and
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Based on that discussion:

 Eventually the reflected waveforms will reach the sending-end, 
and if the source is matched to the impedance of the line:

then all of the energy of the reflected waves will be delivered 
back to the source, and steady-state operation will be 
achieved such that:

and
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It turns out that all of the theory that was presented for a DC 
supplied transmission line will also apply to a transmission line 
that is supplied by an AC source.

But, there is one important consideration that must be taken into 
account when analyzing AC-sourced lines:

since the source is sinusoidally varying, both the incident wave 
and the reflected wave will also be sinusoidally varying.

AC Sourced Transmission Lines
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Thus, unlike DC-sourced lines that experience constant voltages 
and currents on the entire line under steady-state conditions,  
the voltages and currents on the AC-sourced lines will be 
time varying, even under steady-state conditions.

And, it is the time-varying nature of these voltages and currents 
that will cause the AC-sourced lines to no longer react like a 
pair of ideal wires under steady-state conditions, even if 
considered lossless.

AC Sourced Transmission Lines

V+~

V-~

AC Transmission Lines
Part I

Transmission Line Modeling
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Transmission Line Modeling

Due to the sinusoidally-varying nature of an AC source and the 
resulting complex mathematics, we cannot approach to concept 
of AC-supplied transmission lines in the same simple manner 
that we approached DC-supplied lines.

Instead, we will apply finite-element modeling theory to try to 
predict the manner in which a transmission line will react to an 
AC source.
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finite element
having length Δx

Transmission Line Modeling

In order to accurately model the effects of a transmission line on    
a wave that is propagating down the line, the line is typically 
broken down in the small incremental sections (finite elements) 
that are connected together (in-series) to form the overall line.
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Incremental Transmission Line Model
Lx
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The two primary characteristics of a line that must be included in 
the model in order to account for the finite propagation velocity 
of a wave that propagates down the line are the inductance and 
the capacitance of the line, where:

L is the inductance per unit length (H/length),
C is the capacitance per unit length (F/length), and
x is the length of the incremental section.

Incremental Transmission Line Model
Rx Lx

Gx Cx
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Additionally, for a “lossy” line, the resistance of the conductors 
and the conductance of the insulation are also incorporated 
into the model, such that:

R is the resistance per unit length (/length),
G is the conductance per unit length (S/length),
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Incremental Transmission Line Model
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The overall operation of the line can then be accurately predicted 
by replacing each incremental section by the specified model 
provided that the length of each section is small compared to 
the wavelength of the applied waveform.

The above figure shows the model for an incremental section of 
transmission line with the voltages and currents defined at both 
the sending-end and the receiving-end terminals, such that E
and I are the phasor values of the voltage and current seen the 
sending-end of the line, and E and I are the change in the 
voltage and current from the sending to the receiving end.

Steady-State AC Model
of a Uniform Transmission Line
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Steady-State AC Model
of a Uniform Transmission Line
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The voltage and current at the receiving-end of each line section can 
be expressed in terms of the sending-end voltage and current
and the line parameters as follows:
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 R  /x 
 L  H/x 
 G  S/x 
 C  F/x 

Given the following equations derived for the incremental model 
of a uniform transmission line:

If the second order terms are assumed to be small (             ) and 
thus ignored, then:
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Steady-State AC Model Solution
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The resultant equations:

are often simplified by substituting:

resulting in:
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Steady-State AC Model Solution

Given the equations:

by canceling like terms, we may solve for the change in the 
voltage and current from sending-end to receiving-end of an 
incremental section of line (E and I as a function of x):

from which we can define rates-of-change per unit length:
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Steady-State AC Model Solution
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Given the equations:

by allowing the length of the incremental section to become 
infinitely small (           ), we can define the following 1st order 
differential equations relating to the rates of change in the 
voltage and current as a function of position on a uniform line:
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Steady-State AC Model Solution

The 1st order differential equations:

can be combined into a single 2nd order differential equation by 
taking the derivative of both sides of the first equation, solving 
for dI/dx, and substituting the result into the second equation:
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Steady-State AC Model Solution
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The 2nd order differential equation:

has the following general solution:

which can be utilized to define the voltage on a uniform 
transmission line as a function of position on the line.
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Steady-State AC Model Solution

Note that the equation:

has two terms, similar to the equation:

which defines the steady-state voltage at position “x” on a 
transmission-line as the sum of an incident voltage and a 
reflected voltage.
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Steady-State AC Model Solution
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By substituting the equation:

into the 1st order differential equation:

and solving for current, an equation can also be defined for the 
current flowing in a uniform transmission line as a function of 
position on the line:
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Steady-State AC Model Solution

Note that the equation:

also has two terms, similar to the equation:

which defines the steady-state current at position “x” on a 
transmission line as the difference between an incident current 
and a reflected current.
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Steady-State AC Model Solution
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Furthermore, note that the first term of the current equation:

is equal to the first term of the voltage equation:

divided by the constant .

The same relationship also holds true for the second terms of the 
respective equations.
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Steady-State AC Model Solution
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Thus, given the equations:

and the relationships:

it can be seen that both of the first terms of the derived equations 
relate to incident voltage and current waveforms while the 
second terms relate to reflected voltage and current waveforms.
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Steady-State AC Model Solution
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And, based on those results, the following terms may be defined:

where:  is the attenuation constant of the line in nepers/meter, and

 is the phase constant for the line in radians/meter.

Characteristic Impedance: 

Y
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Propagation Constant ( ): 
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Steady-State AC Solution
Relationships

If the new expressions for characteristic impedance and propagation 
constant are substituted into the equations for voltage and current, 
then the general solutions for voltage and current on a 
transmission line, as a function of position, x, are:

Steady-State AC Model Solution
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Thus, the governing relationships for AC voltage and current on a 
transmission-line as a function of position are:
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Note that, if the characteristic impedance is assumed to be purely real, then the 
power associated with the incident and reflected waveforms will be equal to: o

x
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Steady-State AC Model Solution

AC Transmission Lines
Part II

Traveling AC Waves
on a

Matched Transmission Line
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During the previous lecture, we began to analyze the steady-state 
operation of a transmission-line that was supplied by a source   
that was sinusoidally-varying.

Note that       is the phasor representation of the sinusoidally-varying 
source voltage:
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GV
~

Analysis of an AC-sourced Transmission-Line

And, to facilitate that analysis, we utilized a finite element model 
of a transmission-line to obtain the following general solutions 
for voltage and current on that line as a function of position:

where: A1 and A2 were constants,
 was defined to be the propagation constant, and
Zo was the characteristic impedance of the line. 
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General Solutions for an AC-sourced Line
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Furthermore, since actual voltage at any position on a transmission-
line is the sum of any incident and reflected voltages seen at 
that position on the line, it was determined that:

where: defines the incident voltage on the line, and

defines the reflected voltage on the line. x
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Traveling Waveforms on a Transmission-Line

Although both the propagation constant,  , and the characteristic 
impedance, Zo , are defined in terms of the parameters that were 
utilized within the model to represent the various losses associated 
with the transmission line, the constants A1 and A2 within the 
expression:

are a function of the boundary conditions of the system.
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Boundary Conditions and the General Solution
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Thus, in addition to being functions of the parameters of the line, 
the constants A1 and A2 are also functions of the parameters of 
both the source and the load that are connected to the line.

Which means, if we are given a system for which the source and 
load parameters are defined, then we can utilize that information 
in order to determine those constant values and, in-turn, the 
specific solution for voltage as a function of position on that line.
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Boundary Conditions and the General Solution
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Assuming that the load impedance is matched to the characteristic 
impedance of the line (ZR = Zo), then only an incident waveform 
will exist because no reflection will occur (          ) when the 
incident wave reaches the receiving-end of the line.

Thus, the voltage on a matched line can be expressed as:
x

x eAExE   
1

~
)(

~

oR ZZ 

0
~ 

RE

Traveling Waveforms on a Matched Line
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Given the expression:

the constant A1 can be determined by setting the expression 
equal to a known voltage at a specific position on the line.
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Solving for the Constant A1

The phasor value of the incident waveform applied by the source, 
at the sending-end of the line, can be determined from the 
voltage-divider equation:

since the impedance experienced by that incident waveform is 
equal to the characteristic impedance of the line.  
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Solving for the Constant A1
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And if the incident voltage,     , at the sending-end (x=0) of the line 
is known, then the constant A1 can be solved as follows:
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Solving for the Constant A1
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Note that, although a matched load 
was assumed in order to simplify 
the problem, the method used to 
obtain the constant A1 would still 
return the same result even if the 
load was mismatched (ZR  Zo).

Thus, the expression for voltage as a function of position on a 
matched transmission-line is:

where: is the phasor value of the incident voltage applied to the 
sending-end of the line, and

 is the propagation constant for the line.
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Incident Voltage on a Transmission Line

Although the result appears to be simple, the true nature of this propagating waveform 
is difficult to see unless the solution is broken down into its different components.
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Remember that a sinusoidal voltage:

can be expressed as an equivalent phasor voltage:

where: is a complex number in “polar” form, such that
E is the RMS magnitude of the voltage, and
 is the phase angle of the voltage.

Note that, although phasor values may be expressed in terms of their “peak” magnitudes,      
RMS magnitudes will be utilized in this course unless specifically stated otherwise.
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Phasors and AC Voltages
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Now, let’s take a closer look at the expression                          .

is the phasor value of the applied incident voltage, which can 
be expressed as a complex number in polar form:

and since  = + j is a complex number, we can also express 
the exponential term e -x as a complex number in polar form:

where: e -x is the magnitude of the complex exponential, and
-x is the phase angle of the complex exponential.
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Thus, the phasor voltage,        , on the matched line is simply the 
multiple of two complex numbers,      and        , where:

which can be converted back into its equivalent time function:

Based on this result, it can be seen that the attenuation constant, α, 
affects the magnitude of the resultant voltage, while the phase 
constant, β, affects the phase of the resultant voltage.
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And given this sinusoidally-varying incident voltage that can either 
be expressed as a function of time or by its phasor equivalent:

we can now begin to investigate the exact manner in which those 
constants affect the wave as it propagates down the line.  
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Incident Voltage on a Transmission Line
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AC Transmission Lines
Part III

Characterizing
the

Attenuation and Phase Constants

During the previous parts of this presentation, we created a model 
of an AC supplied transmission line and derived the solution for 
the incident voltage on a matched line:

[function of time]

[phasor equivalent]

We will now investigate the manner in which the propagation 
constant (γ = α + jβ) affects the wave as it travels down the line.  
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Characterizing the Propagation Constant
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The following relationship for the propagation constant of a line 
was defined in terms of the parameters (R, L, G and C) that were 
included within the finite element model for a transmission line:

where:  was the attenuation constant of the line in nepers/meter, and

 was the phase constant for the line in radians/meter.
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Given a transmission line with the following parameters:
R = 2.06Ω/m, L = 365 nH/m, G = 0.4μS/m, C = 50 pF/m

determine the propagation constant for the line if the source 
supplying the line is operating at frequency f = 400 MHz.

Propagation Constant Example (Lossy Line)

meter
nepers012027.0

meter
radians737.10

Rx Lx

Gx Cx

+

-

+

-

Vin Vout

Iin Iout

finite element finite elementfinite element

53

54



28

The propagation constant, , of the transmission line determines 
the manner in which a line’s physical characteristics affect any 
wave that is propagating (traveling) on that line.
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as a function of position

Incident Voltage applied at the Sending-End

term containing the Propagation Constant
that affects the incident wave as it travels

distance x down the line 

And as discussed during the previous lecture, the real component  
of the propagation constant, α, affects the magnitude of the 
traveling wave, while the imaginary component, β, affects the 
phase of the traveling wave.
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For example, if the value of the incident voltage applied by a source 
to the sending-end of a line is                    , then the phasor value 
of the incident voltage on the line as a function of position can 
be defined as follows:
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Similarly, if the phasor representation of the incident voltage:

is instead expressed as a function of time, the effects of the 
attenuation and phase constants can also be seen:
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Since the real and imaginary components of the propagation constant 
affect different parts of the incident voltage expression, it is often 
easier to investigate their effects individually.  

Thus, in order to characterize the overall effect of the propagation 
constant on a wave as it propagates on a line, we will begin our 
discussion by first considering an incident voltage as it propagates 
down a lossless line (α = 0).
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Characterizing Attenuation & Phase Constant
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If a line is considered to be lossless, then both the resistance, R, 
of the line’s conductors and the conductance, G, of the line’s 
insulation will both be zero, resulting in:
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Propagation Constant on a Lossless Line

Although both the resistance and the 
conductance terms in the model are 

assumed to be zero (R = 0, G = 0) for 
a lossless line, the inductance, L, 

and the capacitance, C, terms in the 
model will be non-zero regardless of 
whether the line is lossy or lossless.
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Thus, for a lossless line:

such that: the attenuation constant

the phase constant

LCjj   0

Propagation Constant on a Lossless Line

0

LC 
For a lossless line, the propagation constant will be purely imaginary, 

resulting in an attenuation constant that is zero ( = 0) and
a phase constant ( ) that is proportional to frequency.
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Given a lossless transmission line with the following parameters:
L = 365 nH/m, C = 50 pF/m

determine the propagation constant for the line is the source 
connected to the line is operating at frequency f = 400 MHz.
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Since the general solution for incident voltage on a line is:

if the line is lossless (=0), then the magnitude of the incident 
voltage will be constant (i.e. – it will not vary with position) since:
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Attenuation on a Lossless Line
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magnitude does not vary with position x
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But, given the solution for incident voltage on a lossless line:

how does the expression that contains the phase constant, β, 
term within the sine function affect the wave as it propagates 
down the line?
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The phase (θ) of the sine function:

defines the progression of a function through its periodic variation.

As θ varies from 0°360°, sin(θ) varies from 010-10,
repeating again with every additional 360° increase in θ.

The Phase of a Sine Function
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θ may also be defined in radians such that 360° ≡ 2∙π radians.

When sine is defined as a function of time:

the angular frequency, ω, defines the rate at which the function 
progresses through its periodic variation, such that the period, T, 
or length of time required to progress through one complete 
cycle of the waveform is:

The Phase of a Sine Function
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Since ω is defined in radians/second ,
ωt provides an angle in radians.
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When a phase shift, ϕ, is added into the function:

the sine function begins part way through its progression at the 
arbitrary reference time t = 0.

But, why does the incident voltage 
expression have a “–βꞏx term” that is a function of position?

The Phase of a Sine Function
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If, as previously derived, the phasor value of the incident voltage 
applied by the source to the sending-end of the line (x = 0) is:

then the time function that describes the incident voltage at the 
sending-end of the line is:

Incident Voltage at the Sending-End
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But, as the source is applying the incident voltage:

to the sending-end of the line, the instantaneous voltage (and the 
associated current waveform) seen at the sending-end begins to 
propagate down the line at a finite velocity.

And since the voltage varies sinusoidally, it creates an incident voltage 
on the line that varies sinusoidally as a function of position.
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Incident Voltage on a Transmission Line
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Based on this concept, the incident voltage seen at some distance, x, 
from the sending-end of the line is the direct result of some voltage 
that was applied by the source to the sending-end of the line at an 
earlier point in time.
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Incident Voltage on a Transmission Line
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was created one period of time, T, earlier than the voltage 
that is being applied to the sending-end at time to.

If the incident voltage on the line 
is plotted as a function of position 

at some arbitrary time to …
(as shown in the above figure)

then the instantaneous voltage 
shown at this position at time to…
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And since the phase of the voltage is directly related to the time at 
which that voltage was initially applied by the source to the 
sending-end of the line, then compared to the voltage being applied 
to the sending-end at some reference time to, any voltage that was 
created earlier in time should have a phase that is smaller in value.

In other words, in order to account for the fact that the voltages seen 
further down the line were created earlier in time, the phase of 
those voltages decreases as distance x increases.
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Phase of the Incident Voltage
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Thus, the phase constant term, –βꞏx , in the expression:

accounts for the decrease in the phase of the waveform as a as 
the distance x traveled from the sending-end of the line increases, 
which is a direct result of the finite propagation velocity of the 
wave on the line.
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Phase Constant 
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Phase constant,  , can thus be related to the phase velocity, vp,  
of a wave that is propagating on a line by observing the change 
in the position of a constant point of phase as time increases.

And since the phase of the incident waveform is value “inside” the 
sine term when the waveform is expressed as a time-function,     
a constant point of phase occurs when:
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By taking the derivative w.r.t. time of both sides of the expression:

we get:

which can be simplified, as shown on the next slide.
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oR ZZ 
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ZRVG
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X

Phase Constant 

Simplifying
the expression:

 xteEtxe x    sin2),( 0

But, given the resultant equation:

is the phase velocity, vp, which is the velocity of a constant 
point of phase on the line (i.e. – the velocity of the wave), 
allowing for the expression to be rewritten as:

0
dt

dx

dt

dx

0 pv

oR ZZ 
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ZRVG
~

X

Phase Constant 
 xteEtxe x    sin2),( 0
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And based on the equation: 

it can be seen that phase velocity:

or that the phase constant:




pv

pv

 

oR ZZ 

0 L

ZG

ZRVG
~

X

Phase Constant 
 xteEtxe x    sin2),( 0

0 pv

Note that the wavelength, λ, of the wave on the transmission line 
can then be expressed in terms of the phase constant as follows:
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 222







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
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Wavelength λ vs. Phase Constant 
 xteEtxe x    sin2),( 0


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Now that we’ve characterized the phase constant by relating it to the 
decrease in the phase of a wave as it propagates on a line due to 
the finite propagation velocity, now lets go back and take a look at 
the effects of the attenuation constant on a lossy line.

oR ZZ 

Characterizing the Attenuation Constant

0 L

ZG

ZRVG
~

X

EO
+~ EX

+~
+

-

+

-

ZO(    )

magnitude affected by α

volts
~~

0 xeEeEE xx
ox   

x


xE


0E

For a practical (lossy) line, the attenuation constant will be 
greater than zero ( >0 ), resulting in an exponential decrease 
in the magnitude of the incident wave as it travels down the 
line due to the exponential decay function e– ꞏx.

x
x eEE   

0

oR ZZ 

0 L

ZG

ZRVG
~

X

Attenuation on a Lossy Line

 xteEtxe x    sin2),( 0
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The attenuation constant ( ) for a line can be characterized in 
terms of the decrease in magnitude of a wave as it travels from 
position x1 to position x2 on the line.  If expressed as a ratio of 
voltages:

then:  is the attenuation constant in nepers/meters, and
x is the distance traveled in meters.

x
x eEE   

0

xxx
x

x

x

x

x

x ee
e

e

eE

eE

E

E 
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
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Attenuation Constant 

0 L

ZG

ZRVG
~

X1

EO
+~ EX1

+~
+

-

+

- ZO(    )

X2

~
+

-

EX2
+

x

Note that the term x, which has the units of nepers, defines 
the rate of attenuation of the waveform’s magnitude as the 
wave travels a specific distance x down the line.

You probably haven’t heard of the term nepers before, but there 
is another term associated with attenuation that you probably 
have heard, and that term is decibels.


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
1xE


2xE
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x e
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Characterizing Nepers
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Decibel attenuation is utilized to define the decrease in the power   
of a waveform (signal) at one point in a system compared to the 
power of a waveform (signal) at another point in the system.

Specifically, decibel attenuation is defined in terms of a logarithmic
ratio of two powers:






1

2
10atten log10dB

x

x

P

P

Decibel (dB) Attenuation

Ax 10logIf xA 10Then

P1 P2device A

There are many types of measurements that can result in a dataset 
that covers an extremely wide range of values.

For example, the sound pressure amplitude of a jet at takeoff can 
be 3,000,000 times greater than the sound pressure amplitude of 
the quietest sound that a human can hear.

Examples of other measurements that can result in an extremely 
wide-ranging dataset include earthquake intensity (Richter scale), 
RF signal strength, and pH balance.

1

2
10atten log10dB

P

P


Why Logarithms & Decibel Attenuation

83

84



43

Although simultaneously dealing with very large and very small 
numbers can be problematic, often making it very difficult to 
comprehend important details contained within the data, when 
expressed in terms of decibels (logarithms), the wide-ranging 
dataset can be is compressed into something that is much more 
manageable.

For example, the aforementioned sound pressure amplitudes, that 
can differ by a factor of 3,000,000 from small to large, will only 
span the range from 0 to 130 when expressed in decibels.

1

2
10atten log10dB

P

P


Why Logarithms & Decibel Attenuation

In high-frequency systems, there are many devices for which the 
power loss that occurs in a wave as it passes though the device is 
based on a percentage of the initial waveform’s power (and not an 
exact power value), making them suitable for dB characterization.

For example: If  “device A” cuts the signal power in half, then:

1

2
10atten log10dB

P

P


Why Decibel Attenuation

P1 = 2W P2 = 1Wdevice A

P1 = 10W P2 = 5 Wdevice A

P1 = 8mW P2 = 4mWdevice A

Note that, although the  
exact power loss value is

different in each case
(1W vs. 5W vs. 4mW),

P2 is always ½ (50%) of P1.

Practical (lossy) 
transmission lines 

function in this manner.
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And if the power, P2, of a signal as it exits a device is always ½ of
the power, P1, of that same signal as it was entering the device, 
then the decibel attenuation of the signal caused by the device is:

  dB330.010
2

1
log10log10log10dB 10

1

12
1

10
1

2
10atten 

P

P

P

P

Characteristics of Decibel Attenuation

P1 P2 = ½ ∙P1device A

3dB attenuation is equivalent to a decrease or loss of power by a factor of ½.
This is worth memorizing because it is a commonly referenced value.

It turns out that every time P1 is decreased by an additional factor 
of ½, the decibel attenuation increases by +3dB.

Characteristics of Decibel Attenuation

P1 P2device A

P dB Attenuation

P 3dB 

P 6dB

P 9dB

P 12dB

P 15dB

2P

12
1 P

14
1 P

18
1 P

116
1 P

132
1 P
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It also turns out that every time P1 is decreased by a factor of ½ , 
the decibel attenuation increases by +10dB.

Characteristics of Decibel Attenuation

P1 P2device A

P dB Attenuation

P 10dB 

P 20dB

P 30dB

P 40dB

P 50dB

2P

110000
1 P

1100000
1 P

10

11000
1 P

1100
1 P

110
1 P

But, if P2 = P1 (i.e. – there is no loss), then the decibel attenuation is:

Intuitively this should make sense because, if decibel attenuation 
relates to a percent decrease in power, 0dB attenuation relates 
to a 0% decrease, and thus P2 must equal P1.

Characteristics of Decibel Attenuation

P1 P2 = P1device A
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Note that, if original power, P1, and decibel attenuation are both 
known, the remaining power, P2, can be calculated as follows:

Characteristics of Decibel Attenuation

P1 P2Attenuator
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P 10
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12

atten

10  PP

If the signal power entering an 
attenuator is measured to be 2.6W,  
and the signal power exiting the 
attenuator is measured to be 0.4W,

Determine the decibel attenuation.

Decibel Calculation Examples

P1 = 5mW P212 dBP2 = 0.4W P1 = 2.6W Atten.
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6.2

4.0
log10

log10dB

10

10

1

2
10atten







P

P

If the signal power entering a 12dB 
attenuator is measured to be 5mW,

Determine the signal power that will 
exit the attenuator.
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Assuming that an incident voltage is propagating on a transmission 
line whose characteristic impedance is purely real, then the power 
associated with the incident waveform, Px 

+, at position x on the 
line is equal to:

Incident
Power
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x
xxxx Z
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Relating Nepers to Decibels
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And since incident power, Px
+, at position x is proportional to (Ex

+)2, 
decibel attenuation can also be defined in terms of a logarithmic 
ratio of voltages:
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Relating Nepers to Decibels
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




1

2
10atten log20dB

x

x

E

E

x


xE


1xE


2xE

1x 2x

x

x

x e
E

E 




 

1

2

If the (neper) ratio of voltages
is substituted into the
expression for decibels:

Then the following relationship 
between nepers and dBatten

can be derived: 

Relating Nepers to Decibels
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Thus, neper attenuation is related to decibel attenuation as follows:
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dB11513.0
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Note that, since decibel attenuation information for standard cable types is provided in Table 1.3, 
that information can be used to determine the attenuation constant, , for those cable types.

Relating Nepers to Decibels
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Determining the Propagation Constant 
Rx Lx

Gx Cx

+

-

+

-

Vin Vout

Iin Iout

Although we originally derived the expression for the propagation 
constant, , from the parameters that composed the incremental 
model of the transmission line:

in the vast majority of cases, you will not have knowledge of the 
values of those parameters.

))(( CjGLjRYZj  

Coaxial Cables 

RG # 
AWG 

Material 
Insulation 

# 
Shields 

Jacket 
Nom. 
O.D. 
(inch) 

Nom. 
Imp. 

(Ohms) 

Nom. 
Vel. Of 
Prop. 

Nom. 
Cap. 

(pF/ft.) 

Nom. Attenuation 
per 100’ 

MHz             dB 

Standard 
Spool 

Lengths 

14/U 
20 

Copper 
Poly-

ethylene 
1 

Black 
Vinyl 

.420 95 66% 16.0 
100 
200 
400 

3.0 
4.5 
6.0 

100, 
500 

 

Determining the Propagation Constant 
Rx Lx

Gx Cx

+

-

+

-

Vin Vout

Iin Iout

But, instead of trying to determine the value of the propagation 
constant, , from the parameters, it turns out that you can solve   
the individual components  and   in the expression for γ = α + jβ, 
for a variety of common types of coaxial cables, directly from the 
information provided in Table 1-3 of the textbook.
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Determine the attenuation constant  for RG 14/U cable at 100MHz.

Thus:

meter
dB

meter
feet

foot
dB

100feet
dB

atten 09843.0281.303.0
100

1
0.3 dB 

meter
Nepers

dB
Nepers

meter
dB

meter
Nepers 01133.011513.009843.0 

Coaxial Cables 

RG # 
AWG 

Material 
Insulation 

# 
Shields 

Jacket 
Nom. 
O.D. 
(inch) 

Nom. 
Imp. 

(Ohms) 

Nom. 
Vel. Of 
Prop. 

Nom. 
Cap. 

(pF/ft.) 

Nom. Attenuation 
per 100’ 

MHz             dB 

Standard 
Spool 

Lengths 

14/U 
20 

Copper 
Poly-

ethylene 
1 

Black 
Vinyl 

.420 95 66% 16.0 
100 
200 
400 

3.0 
4.5 
6.0 

100, 
500 

 

Determining the Attenuation Constant 
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10x98.1)10x3()66.0(c)66.0(
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
p

p

v

v

Determine the phase constant  for RG 14/U cable at 100MHz.

Therefore:

Coaxial Cables 

RG # 
AWG 

Material 
Insulation 

# 
Shields 

Jacket 
Nom. 
O.D. 
(inch) 

Nom. 
Imp. 

(Ohms) 

Nom. 
Vel. Of 
Prop. 

Nom. 
Cap. 

(pF/ft.) 

Nom. Attenuation 
per 100’ 

MHz             dB 

Standard 
Spool 

Lengths 

14/U 
20 

Copper 
Poly-

ethylene 
1 

Black 
Vinyl 

.420 95 66% 16.0 
100 
200 
400 

3.0 
4.5 
6.0 

100, 
500 

 

%66Prop. of Vel. Nom. 

Determining the Phase Constant 
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Based on the previous results, the propagation constant  for    
RG 14/U cable at 100MHz is:

which can be used to solve for the value of the incident voltage 
as a function of position provided that the value of the incident 
voltage Eo

+ applied to the sending-end of the cable is known:

Coaxial Cables 

RG # 
AWG 

Material 
Insulation 

# 
Shields 

Jacket 
Nom. 
O.D. 
(inch) 

Nom. 
Imp. 

(Ohms) 

Nom. 
Vel. Of 
Prop. 

Nom. 
Cap. 

(pF/ft.) 

Nom. Attenuation 
per 100’ 

MHz             dB 

Standard 
Spool 

Lengths 

14/U 
20 

Copper 
Poly-

ethylene 
1 

Black 
Vinyl 

.420 95 66% 16.0 
100 
200 
400 

3.0 
4.5 
6.0 

100, 
500 

 

meter
radians173.30113315.0 jj meter

Nepers  

Determining the Propagation Constant 

x
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AC Transmission Lines
Part IV

Traveling AC Waves
on an

Unmatched Transmission Line

101

102



52

In part I of this presentation, we developed an incremental model 
for a transmission-line and then utilized that model to derive the 
general solution for steady-state voltage on the transmission 
line as a function of position, x:

the first term of which defines the incident voltage on the line, 
while the second term defines the reflected voltage on the line.

Steady-State Voltage on a Transmission Line 

xx
xx eAeAEExE   

21

~~
)(

~

+
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+

-

Vin Vout

Iin IoutRx Lx

Gx Cx

Rx Lx

Gx Cx

Rx Lx

Gx Cx

In part II of this presentation, we considered the case of a matched 
transmission-line in order to isolate the first term in the general 
solution that related to the incident voltage on the line:

and determined an expression for the constant A1, where:

(the incident voltage applied to the sending-end by the source)
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Solving for the Constant A1
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 oEA
~
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If we substitute this result into the equation for the general solution 
of steady-state voltage on the transmission line as a function of 
position, x, we are then left with an equation that still contains the 
constant A2 in the term that defines the reflected voltage:

In order to solve for this constant, we will now consider the case of 
an unmatched transmission line (              ).

Solving for the Constant A2
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If the load impedance is not matched to the characteristic impedance 
of the line:

then a reflection will occur when the incident wave reaches 
the receiving-end of the line, such that:

where

oR ZZ 

oR ZZ 

RRR EE   ~~
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R ZZ

ZZ


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Reflected Voltage on an Unmatched Line
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And if a reflection occurs, the reflection term in the solution:

will no longer be zero, allowing us to solve for the constant A2 in 
the same manner for which we determined the constant A1.

oR ZZ 

xx
oxx eAeEEExE   
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Note that the reflection produced by the unmatched load will experience the same propagation 
effects as it travels in the “-x” direction back towards the sending-end of the line.


xE

~

Reflected Voltage on an Unmatched Line

Since the applied incident waveform must travel distance L to reach 
the receiving-end of the line, the value of the incident wave that 
reaches the receiving-end (x =L) is:

resulting in the creation of a reflected wave at the receiving-end
that is equal to:
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Reflected Voltage on an Unmatched Line
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By substituting x=L into the general solution for reflected voltage
and setting it equal to the known value of the reflected voltage at 
the receiving-end that we defined in terms of the incident voltage:

the constant A2 can be determined as follows:
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Solving for the Constant A2

This equates to the 
incident wave applied 

to the sending-end 
after it travels to and 
reflects off the load.

Now that constants A1 and A2 are known, the steady-state solution 
for voltage on a transmission-line as a function of position, x, is:

where: is the phasor value of the sending-end incident voltage,

is the value of the reflection coefficient due to the load,

is the propagation constant for the line, and

is the length of the line.
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Steady-State Voltage on an Unmatched Line
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Now that constants A1 and A2 are known, the steady-state solution
for voltage on a transmission-line as a function of position, x, is:
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Steady-State Voltage on an Unmatched Line

Keep in mind that the terms shown in this equation define the incident and reflected voltages 
when expressed as their phasor equivalents, and that the incident and reflected voltages are 
actually sinusoidally-varying waveforms that are traveling in opposite directions on the line.

Based on the previous solution, the steady-state voltage at the 
sending-end of the line (x =0) is:
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The first term is the incident voltage that the 
source applies to the sending-end of the line.

The second term is the result of the sending-end incident voltage after it travels to the 
receiving-end, reflects off the load, and travels back to the sending-end of the line.

Steady-State Voltage on an Unmatched Line
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The steady-state solution for current on a transmission-line as a 
function of position can be defined in terms of the voltage as:

since:
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Steady-State Current on an Unmatched Line

In-turn, the steady-state for current at the sending-end of the 
line (x =0) is:
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Steady-State Current on an Unmatched Line
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Since impedance on the line at position x can be defined as the 
ratio of the steady-state voltage and current at position x:
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Impedance on an Unmatched Line

ZOVG
~

0 L

ZG

ZRR

X = 0

Zin

The result:

can be utilized to determine an expression for the steady-state
(sending-end) input impedance of the line (x = 0):
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The input impedance of the line :

is often of interest because it defines the impedance that the 
source experiences under steady-state conditions, and thus can  
be used as an equivalent impedance in place of the “line-load” 
combination, allowing a phasor-analysis of the system’s operation 
from the perspective of the source.

Input Impedance of a Transmission-Line
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In other words, the input impedance of the line is equal to the ratio 
of the steady-state, sending-end, voltage and current:

and as such, if the “line-load” combination is replaced by an 
equivalent impedance Zin, then the source’s operation can be 
analyzed by means of a phasor analysis of the simplified circuit.

Input Impedance of a Transmission-Line
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For example, if the input impedance of the line is utilized, then the 
steady-state current can be solved using Ohm’s Law and the 
steady-state voltage can be solved from a voltage-divider equation:

Input Impedance of a Transmission-Line
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This also allows for the use of other circuit theorems, such as the maximum power transfer theorem, 
which states that a source will deliver maximum power to a load if the load impedance is equal to 

the (purely real) series impedance of the source.
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The reflection coefficient, R, of the load was defined as the ratio 
of reflected and incident voltages at the receiving-end of the line:

From this, the load impedance, ZR, can be defined in terms of 
reflection coefficient:
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Reflection Coefficient vs. Load Impedance
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In addition to defining an impedance at any point on a transmission 
line as the ratio of the steady-state voltage and current at that 
position, a reflection coefficient can also be defined as a ratio of 
the reflected and incident voltages at that position:

even though the actual reflection occurs at the receiving end.

Reflection Coefficient on a Line
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And based on this concept, an input reflection coefficient, in,
can also be defined as the ratio of the reflected and incident 
voltages at the sending-end of the line:
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Since:

the expression for the input impedance can be rewritten as:
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Reflection Coefficient vs. Input Impedance

Note that the expression for input impedance is similar in form to 
the expression for load impedance (in terms of reflection coefficient):

This similarity, along with the relationship                        , provides 
the foundation upon which a graphical solution for impedance 
on a transmission-line using a Smith Chart will be derived*.
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* - in an upcoming lecture
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Given a 5.5 meter section of RG 14/U supplied by a source that 
has the following characteristics:

determine the steady-state voltage at the sending-end,     , the 
steady-state voltage at the receiving-end,     , and the input 
impedance of the line,      , if the line is terminated by a load 
having the impedance                    .
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For RG 14/U, the characteristic impedance and velocity are:

thus wavelength at 100MHz is:
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Coaxial Cables 

RG # 
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For RG 14/U, the propagation constant  is:

Keep at least 4
significant-digits of 
accuracy throughout 

all calculations!
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The reflection coefficient, ΓR, due to the mismatched load is:

and the incident voltage applied to the sending-end,      , is:
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Thus, given the equation:

the steady-state voltage at the sending-end of the line,      , is:SE
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And given the equation:

the steady-state voltage at the receiving-end of the line,      , is:
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Additionally, the input impedance of the line, Zin , is:
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Also note that, if the input impedance of the line is utilized, then 
the steady-state current can be solved using Ohm’s Law and 
the steady-state voltage can be solved using a voltage-divider:
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For a lossless line, the propagation constant is purely imaginary:

Based on this, the input impedance expression can be rewritten as: 
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Since the value of a complex number expressed in polar form 
repeats with every 2π radian (or 360) decrease in angle, the 
value of the input impedance of a lossless line:

must repeat periodically whenever an increase in length causes 
the angle  ̵ 2 L to decrease by 2π radians. 
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Thus, the input impedance of a lossless line will periodically repeat 
whenever the length of the line increases by ½ wavelength:
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Furthermore, if the length of a lossless line is an integer multiple of 
½ wavelength, then the input impedance of the line will equal to 
the load impedance (independent of characteristic impedance):
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Whenever a steady-state AC voltage is applied to an unmatched 
transmission-line, the resultant voltage on the line is equal to 
the instantaneous sum of the incident and reflected voltages:

Note that the waveforms shown above result from a SC load (ZR = 0).
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It turns out that the RMS magnitude of the voltage at any position 
on the line is constant, the forming a standing wave pattern.

The standing wave pattern can be seen by plotting the RMS 
magnitude of the voltage as a function of position.  Note that the 
pattern repeats periodically with every ½-wavelength change 
in position on the line.
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Standing Waves on a Transmission Line

The Voltage Standing Wave Ratio (VSWR) is defined as the 
ratio of the magnitude of the maximum RMS voltage in the 
standing-wave pattern over the magnitude of the adjacent 
minimum RMS voltage.
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The magnitude of the RMS voltages will be at a maximum 
whenever the incident and the reflected waves are in-phase, 
and at a minimum whenever the incident and the reflected 
waves are out-of-phase by 180.

Thus:
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The expressions for |Emax| and |Emin| can be substituted into the 
relationship for VSWR with the following result:
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Note that the following expressions:

 

holds true only if the line is assumed to be lossless, such that 
the magnitudes of the incident and reflected waves are constant.
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