

Introduction

What are "High Frequency" Systems

The concept of what constitutes a "**high frequency**" system can be vary different depending on one's point of view...

- A power-system (50-60Hz) engineer may consider any waveform above 1000Hz as a "high-frequency"
- An audio engineer that works with 20-20kHz signals may consider ultrasonic signals (>20kHz) as "high frequency"
- Both of the above engineers would probably consider anything above 100kHz as "high frequency"
- An Rf engineer working at an AM Radio Station (~1Mhz) might consider anything above 100MHz as "high frequency"
- But a microwave engineer that designs >10Ghz circuits might consider all of the above-mentioned frequencies as "low frequency"

What are "High Frequency" Systems

All of the previous examples provide subjective (and greatly varying) definitions of what constitutes a "**high-frequency**" system based upon the respondent's background.

Thus, to truly characterize what constitutes a high-frequency system, we need to discuss a fundamental concept that is often neglected in traditional circuits, electronics, and digital courses:

Travel Velocity

But what if we Account for Travel Velocity?

Assuming maximum travel velocity, the voltages will travel 15cm every ½nsec, which is the length of time that the inputs will remain "high".

But, as shown in the figure, the lines that connect the two devices together are of different lengths...

Frequency, Velocity, and Wavelength

The **wavelength** of a periodic traveling waveform is:

$$\lambda = \frac{\nu}{f}$$

where:

 λ is wavelength, v is velocity, and f is frequency.

Wavelength vs. Frequency

The following table shows wavelength as a function of frequency for waves traveling at the speed of light.

Frequency (f)	Period (T)	Wavelength (λ)
60 Hz	16.67 msec	5000 km
1000 Hz	1 msec	300 km
1 MHz	1 µsec	300 m
100 MHz	10 nsec	3 m
1 GHz	1 nsec	30 cm
10 GHz	100 psec	3 cm

High Frequency Systems

With respect to AC systems:

When a transmission line's length becomes greater than 10% of the wavelength of an applied waveform, high frequency effects should be considered.

With respect to digital systems:

When a transmission line's length becomes greater than 10% of the distance that a signal can travel in one "clock-cycle", high frequency effects should be considered.

