Coaxial Cables												
	AWG		#		Nom.	Nom.	Nom.	Nom.	Nom. At	tenuation	Standard	
RG #	Material	Insulation	π	Jacket	O.D.	Imp.	Vel. Of	Cap.	per	100'	Spool	
	Wateriai		Silicius		(inch)	(Ohms)	Prop.	(pF/ft.)	MHz	dB	Lengths	
14/U	20 Copper	Poly- ethylene	1	Black Vinyl	.420	95	66%	16.0	100 200 400	3.0 4.5 6.0	100, 500	
14A/U	20 Copper	Poly- ethylene	1	Black Vinyl	.420	92	66%	16.0	100 200 400	3.5 5.0 7.0	100, 500	
16A/U	18 Copper	Cellular Poly-ethylene	1	Black Vinyl	.195	50	78%	30.8	100 200 400	5.0 7.0 9.5	100,500 1000	
18/U	18 Copper	Cellular Poly-ethylene	1	Black Vinyl	.280	75	78%	24	100 200 400	2.0 3.0 4.5	100,500 1000	

Problem #1) A **800 MHz, 2 \angle 0^\circ volt**, incident waveform is applied to a **30 cm** long lossy transmission line with a propagation constant of $\gamma = 0.32$ Np/m + j19.95 rad/m. The transmission line is terminated with a matched load.

Determine the voltage (in polar form) at the load and the velocity of the wave on the line.

$\widetilde{V}_{load} = $	_1.817∠17.08°	(V)
v =	2.52x10 ⁸	(m/sec)

Problem #2) A 5 $\angle 0^\circ$ volt, 100 MHz incident waveform is applied to the input of a 10 meter long (lossy) transmission line having a propagation constant of $\gamma = 0.04$ Np/m + j3.035 rad/m at the applied

frequency. The line is terminated with an "ideal" open-circuit.

Determine the actual steady-state **voltage** at the load (in polar form), and the **input impedance** of the line at this frequency.

$$\widetilde{V}_{load} =$$
_____(V)

(Note – This Problem has changed)

$$Z_{in} =$$
 (Ω)

Problem #3) Given the following characteristics of a transmission line:

$$R = 20 \Omega / km$$
 $L = 0.5 mH / km$

$$G = 0.1 \text{ mS} / \text{km}$$
 $C = 50 \text{ nF} / \text{kr}$

A 100 MHz voltage is applied to the transmission line,

- a) Determine the characteristic impedance (Z_0) of the line in ohms.
- b) Determine the **attenuation constant** (α) of the line in Np/km.
- c) Determine the **phase constant** (β) of the line in rad/km.
- d) Determine the velocity of the wave (v) on the transmission line in km/sec.

Problem #4) A 400 MHz, 10∠0° volt wave is applied to the sending end of a 200 foot long piece of RG 14/U

- cable. The cable is terminated with a **matched load**. (Note: 1Np = 8.686 dB)
- a) Determine the **attenuation** (α) of the line in Np./ft.
- b) Determine the **phase delay** (β) of the line in rad./ft.
- c) Determine the value of the voltage that reaches the load (in polar form).

α =	0.00691	Np./ft.
β =	3.87	rad./ft.
V _{load} =	2.51∠-54.54°	(V)

Problem #5) An incident voltage waveform is traveling down a lossless piece of 50Ω cable. When the waveform reaches the receiving end, it has a value of $5\angle 20^\circ$ volts. If the load terminating the cable has a value of $Z_R = 100+j100\Omega$, determine the value of the reflected voltage in polar form.

E⁻=_____V

Problem #6) Determine the **input impedance** of a **0.6 meter** long, lossless piece of 50Ω coaxial cable if the cable is terminated with a **matched load**.

 $\mathbf{Z}_{in} = \underline{50}$

Problem #7) A 100 MHz, 10∠0° volt wave is applied to the input of an *infinitely long* (lossy) transmission line with a propagation constant of γ = .001 Np/m + j3.035 rad/m. Determine the voltage (in polar form) at a distance of 1 kilometer down the line.

 $V_{2km} =$ ______(V)

Problem #8) A $5 \angle 0^{\circ}$ volt, 100 MHz incident waveform is applied to the input of a 10 meter (lossy) transmission line having a propagation constant of $\gamma = 0.04$ Np/m + j3.035 rad/m at the applied frequency and a characteristic impedance of $Z_0 = 100\Omega$. The line is terminated with an "ideal" short-circuit. Determine the actual steady-state voltage at the load (in polar form), and the input impedance of the line at this frequency.

 $\widetilde{V}_{load} =$ _____(V)

- $Z_{in} = ____1 110-j105____(\Omega)$
- **Problem #9**) A $2 \angle 0^{\circ}$ volt, 100 MHz incident waveform is applied to the input of a (lossless) transmission line that has a 75 Ω characteristic impedance and a propagation constant of $\gamma = 0$ Np/m + j3.04 rad/m at the applied frequency. The line is terminated with an open circuit.
 - a) If the transmission-line is **0.75 meters** long, determine the *actual steady-state voltage* (in polar form) *at the sending-end of the line* (i.e. a position of "0" meters).
 - b) Also determine the *sending-end voltage* if the line <u>length is increased</u> to a total of 1.55 meters.

$$\widetilde{V}_{S(0.75m)} = \underline{\qquad} (V)$$

$$\widetilde{V}_{S(1.55m)} =$$
_____(V)