Coaxial Cables											
	AWG		#		Nom.	Nom.	Nom.	Nom.	Nom. At	tenuation	Standard
RG #	Material	Insulation	Shields	Jacket	O.D.	Imp.	Vel. Of	Cap.	per	100'	Spool
	Widterfidi		Silicius		(inch)	(Ohms)	Prop.	(pF/ft.)	MHz	dB	Lengths
14/U	20 Copper	Poly- ethylene	1	Black Vinyl	.420	95	66%	16.0	100 200 400	3.0 4.5 6.0	100, 500
14A/U	20 Copper	Poly- ethylene	1	Black Vinyl	.420	92	66%	16.0	100 200 400	3.5 5.0 7.0	100, 500
16A/U	18 Copper	Cellular Poly- ethylene	1	Black Vinyl	.195	50	78%	30.8	100 200 400	5.0 7.0 9.5	100,500 1000
18/U	18 Copper	Cellular Poly- ethylene	1	Black Vinyl	.280	75	78%	24	100 200 400	2.0 3.0 4.5	100,500 1000

Problem #1) A TDR test was performed on a piece of **RG 16A/U** cable of unknown length, terminated with a purely resistive load. The results of the test are as follows (assume the cable is lossless):

Determine the **length** of the cable in meters and the **load impedance** in ohms.

Length =	17.55	(m)
$R_{load} =$	38.9	Ω

Problem #2) Given the system shown below containing a transmission line (due to the short length of the line, you may assume the line is lossless for this problem),

Plot the **voltage** along the line as a function of position at a time of t = 25 nsec.

Problem #3) A coaxial cable has an inner-conductor diameter of 0.5mm, an outer diameter of 5mm, and is filled with polyurethane ($\varepsilon_r = 1.9$). Determine the **characteristic impedance** (\mathbf{Z}_0) of the cable.

Problem #4) A 6 meter, RG 14/U type coaxial cable is excited by a 450 MHz source. Determine the **electrical length** (L) of the line in wavelengths.

L = _____13.636____(λ)

Problem #5) A TDR test was performed on a piece of RG 14A/U cable of unknown length, terminated with a purely resistive load. The results of the test are as follows (assume the cable is lossless):

Vert. 0.1 V/div Horiz. 20 nSec/div					

Determine the **length** of the cable in meters and the **load impedance** in ohms.

Problem #6) Given the system shown below containing a lossless line, Plot the **voltage** along the line as a function of position at a time of t = 167 nsec.

Problem #7) A TDR test was performed on a piece of RG 16A/U cable of unknown length, terminated with a purely resistive load. The results of the test are as follows (assume the cable is lossless):

Vert. .5 V/div					
50 nSec/div					

Determine the **length** of the cable in meters and the **load impedance** in ohms.

 $R_{load} =$ **25** Ω

Problem #8) Given the system shown below containing a lossless line,

(See textbook)

Problem #10) A long piece of **RG 14/U** cable is measured to have an attenuation value of 12.5 dB at 200 MHz. Determine the unknown **length** of the cable.

Length = _______ft.

Problem #11) It is determined that a transient propagates down the entire length of a 200 meter spool of coaxial cable in 1.075 μ sec. Assuming a unity relative permeability (μ r=1) for the cable, determine the **relative permitivity** (ϵ r) of the insulation within the cable.

 $\epsilon_r = ____2.6____$

Problem #12) A TDR test was performed on a piece of RG 16A/U cable terminated with an unknown load. The results of the test are as follows (assume the cable is lossless):

Vert. 100 mV/div Horiz. 5 nSec/div					
·					

Determine the **length** of the cable in meters and the **load impedance** in ohms.

length =	2.34	 (m)
-		

 $Z_{\rm R} =$ _____33.3____Ω

Problem #13) A 4 mW r.f. wave is applied to the input of a transmission line with a matched load.

- a) **Convert** this value to **dBm**.
- b) If the transmission line is a 200' section of RG 14/U and the frequency of the wave is 100MHz, how much r.f. power will reach the **receiving end** of the line (in dBm)

a) $P_{in} = _____6 (dBm)$ b) $P_{out} = ____0 (dBm)$

Problem #14) Determine the attenuation constant and the propagation constant for a section of RG 14A/U at a frequency of 400 MHz. (1 ft = 0.3048 m)

 $\alpha =$ 0.00805 (Np/ft) $\beta =$ 3.86 (rad/ft)

Problem #15) Given the system shown below containing a transmission line (assume the line is lossless), Plot the **voltage** and **current** along the line as a function of position at a time of t = 0.12 µsec after the switch closes.

Problem #16) A TDR test was performed on a piece of RG 18/U cable terminated with an unknown load. The results of the test are as follows (assume the cable is lossless):

Vert. 100 mV/div Horiz. 500 nSec/div Determine the **length** of the cable in meters and the **load impedance** in ohms.

If the cable is not assumed lossless, would your answers change? (circle one) → (Yes / No) Justify your answer in the space below:

Problem #17) Given the system shown below containing a lossless line,

Plot the **voltage** as a function of position at a time of t = 467 nsec after the switch closes.

Problem #18) A 20mW r.f. wave is applied to the input of a transmission line terminated with a matched load.c) Convert this input power value to dBm.

- d) If the transmission line is a 150' section of **RG 16A/U** and the frequency of the wave is 400MHz, how much r.f. power will reach the **receiving end** of the line (in dBm)
- e) Convert the dBm output power to its equivalent milliwatts value.

c)	$P_{in} = $	 _(dBm)
d)	$P_{out} =$	 (dBm)
e)	$P_{out} =$	 (mW)

Problem #19) For each of the following, specify whether or not each of the responses is true by writing either TRUE or FALSE in the blank preceding each response.

_____ The magnitude of a *reflection coefficient* due to a load can never be greater than one.

- The *characteristic impedance* of a transmission-line defines the ratio of voltage to current of an incident or a reflected waveform.
- For normal transmission-lines, the *permeability* of the material surrounding the line is assumed to be one.
 - Given a source connected to a coaxial line; if the source frequency is increased, the *wavelength* on the line will also increase.
 - ____ The *nominal velocity* (as given in table 1-3 of the text) defines the velocity of a wave on a coaxial-cable as a percent (%) of the speed of light in "air" (free-space).
 - _____When expressed in decibels, *attenuation* on a coaxial-cable is linearly proportional to length.

Both the *attenuation constant* (α) and the *phase delay* (β) may be assumed to be zero on a lossless transmission-line.

Answers to True/False:

Additional True/False Problems)

The <i>magnitude</i> of the <i>reflection coefficient</i> due to a termination must be less than one.
A <i>lossless</i> transmission-line will always have a propagation velocity of 3×10^8 m/sec or less.
Given a source connected to a coaxial line; if the source frequency is increased, the <i>wavelength</i> on the line will also increase.
When expressed in decibels, <i>attenuation</i> on a coaxial-cable is linearly proportional to length.
The <i>velocity of propagation</i> is assumed to be 3×10^8 m/sec for an air-filled coaxial cable.
The <i>attenuation constant</i> (α) and the <i>phase delay</i> (β) must both be non-zero on a lossy transmission line.
For normal coaxial transmission-lines, the <i>relative permittivity</i> of the material between the conductors is assumed to be one.
Answers to True/False

Answers to True/False:

False	False	True	True	False	True	False	
L	ast		←		Fii	st	