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Electric Power Systems
An Electric Power System is a complex network of 

electrical components used to reliably generate, 
transmit and distribute electric energy on a real-time  
or “as-needed” basis.

Within the United States, the primary method of 
distributing electric power is by means of a three-phase 
transmission and distribution system.

Electric Power Systems
In terms of its operation, an electric power system can 

be divided into three primary subsystems, each of 
which performs a key function:

• Generation
• Transmission
• Distribution
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Electric Power Generation
In terms of its operation, an electric power system can 

be divided into three primary subsystems, each of 
which performs a key function:

• Generation
• Transmission
• Distribution

Electric Power Generation
Most of the electric energy that is transmitted/distributed 

by means of the electric power system is produced at 
generating stations, in which either fuel energy or 
hydraulic energy is converted into an electric form.

Gas-fired Combustion Turbine Generator
Sewell Creek Energy Facility – Oglethorpe Power
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Electric Power Generation
The generating stations, or “power plants” as they are 

commonly called, are often located at great distances 
both from each other and from the end users of the 
electric energy that they produce.

All of the power plants and the electric loads are 
connected together by means of a complex wired 
(transmission/distribution) network, across which the 
electric energy can be transported from the various 
sources to the individual loads. 

Electric Power Generation
It is important to note that the losses associated with 

transportation of electric energy across a “lossy” line 
are proportional to the square of the line current 
magnitude, making it more efficient to transport the 
energy at a higher-voltage/lower-current level.

Furthermore, since there is a limit to the amount of 
current that can be allowed to continuously flow 
through a practical conductor, more electric energy 
can be transported across a specific-sized line if it is 
transported at a higher-voltage/lower-current level.
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Electric Power Generation
Although large modern generators typically produce 

electric energy at voltage levels ranging from 13.8kV 
to 24kV, higher voltages are required in order to 
efficiently transport that energy across large 
distances.

Nameplate from 165MVA, 13.8kV, 3Φ Generator

Electric Power Generation
Although large modern generators typically produce  

electric energy at voltage levels ranging from 13.8kV     
to 24kV, higher voltages are required in order to 
efficiently transport that energy across large       
distances.

For this reason, a step-up
transformer is located at
each power plant in order
to raise the output voltage
of the generator to
transmission levels.

13.8kV – 230kV Step-Up Transformer
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Electric Power Generation
In terms of its operation, an electric power system can 

be divided into three primary subsystems, each of 
which performs a key function:

• Generation
• Transmission
• Distribution

Generating Station                                  Step-Up Transformer

Electric Power Transmission
In terms of its operation, an electric power system can 

be divided into three primary subsystems, each of 
which performs a key function:

• Generation
• Transmission
• Distribution
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Electric Power Transmission
Electric Power Transmission is the bulk transfer of 

electric energy within an electric power system from 
the various generating stations to the “substations” 
that connect the transmission system to the 
distribution networks.

Note - An electric power substation is an assembly of 
equipment in an electric power system 
through which electric energy is passed for 
transmission, transformation, distribution, 
or switching purposes.

Electric Power Transmission
Electric Power Transmission is the bulk transfer of      

electric energy within an electric power system from      
the various generating stations to the “substations”        
that connect the transmission system to the        
distribution networks.

The help ensure that the electric energy is able to reach 
the end-users, even during times of equipment failure 
or other disruption, the transmission system is setup 
such that it provides multiple (redundant) paths for 
the energy to flow.
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Electric Power Transmission
In terms of system design, it is uneconomical to connect 

all of the distribution substations to the high-voltage 
transmission lines that are used to transport large 
amounts of energy across long distances due the size 
and cost of the high-voltage equipment.

For this reason, the networks utilized for electric power 
transmission are divided into two categories based on 
their operating voltages:

Transmission: typically 115kV – 765kV
Sub-transmission: typically 34.5kV – 115kV

Electric Power Transmission
The Transmission Network or “Power Grid” consists of 

an interconnection of high-voltage transmission lines 
that allow large amounts of electric energy to flow 
from point to point across long distances.

Since the transmission network forms the backbone of 
the electric power system, interconnecting the 
generating stations to the various regional load 
centers, it must be able to deliver very large amounts 
of electric energy to the load centers and it must be 
able to accommodate any operational changes in the 
system.
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Electric Power Transmission
The standard operating voltages for a transmission 

network are:

High Voltage (HV): 115, 138 & 230kV
Extra High Voltage (EHV): 345, 500 & 765kV 

Electric Power Transmission
Unlike the transmission network that moves large amounts 

of power between regions, the Sub-Transmission Network
provides power to a specific region.

For this reason, sub-transmission circuits are usually 
arranged in loops so that a single line failure does not 
cut-off power to a large amount of customers for more 
than a short time.

Sub-transmission networks operate at lower voltages than 
transmission networks, allowing for more economical 
connection to all of the distribution system substations.
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Electric Power Transmission
Note that there is no fixed cutoff between transmission 

and sub-transmission networks.

As systems have evolved, the operating voltages of the 
sub-transmission networks have increased such that 
they overlap with those of the transmission networks, 
sometimes reaching up to 138kV.

Electric Power Distribution
In terms of its operation, an electric power system can 

be divided into three primary subsystems, each of 
which performs a key function:

• Generation
• Transmission
• Distribution
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Electric Power Distribution
Electric Power Distribution is the final stage in the transfer of 

electric energy within an electric power system, during which 
the energy that was transferred from the transmission system 
to the distribution system is delivered to the customers.

The distribution system operates at medium-level voltages 
ranging from 4kV to 34.5kV, most commonly in the 11kV to 
15kV range. 

Although some large customers are fed directly from the 
distribution lines, most customers are supplied through a 
transformer that steps down the distribution voltage to a 
relatively low level for use by the equipment in the customer 
facility. 

Electric Power Distribution
Distribution networks are typically configured as one of 

either two types:
• Radial
• Interconnected

Radial networks serve their network area from a single 
substation, with no connection to any other supply.

Interconnected networks also serve their network area 
from a single substation, but they typically have 
multiple connections to other substations.  These 
connections are normally open, but can be closed as 
needed during faults or times of maintenance. 
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A (single-phase) AC voltage source is a source whose 
voltage varies sinusoidally, as defined by the function: 

where: is the RMS or “effective” voltage magnitude of the AC waveform,

ω is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the waveform.
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may also be expressed in “phasor” form: 
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A three-phase (3Φ) AC voltage source is a composite source that 
can be modeled using three single-phase AC voltage sources 
that are connected together to function as one complete unit.

Note that the three single-phase AC voltage sources must be connected 
together in a symmetrical fashion.

va
~

+ +

vb
~

+

vc
~

Three-Phase AC Voltage Sources

The three sources are typically connected 
together in a “Wye” (Y) format such that the 
reference terminals of the three supplies are 
tied to a common point of connection.

The common point of connection is referred to 
as the “neutral point”.  

(node n in the figure)

Note that the neutral point is often grounded in order 
to provide a zero-volt reference for the source.

Wye-connected Three-Phase Source
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If the remaining nodes are labeled a, b, and c, 
then: 

• Then the voltage      can be defined as the 
voltage-rise from the neutral point n to 
node a.

• Similarly, voltages      and      can be 
defined as the rises from node n to b and 
node n to c respectively.

aV
~

bV
~

cV
~

Wye-connected Three-Phase Source

The voltages      ,      , and      are referred to as 
“phase voltages” because they correspond to 
the voltage across each individual phase of the 
wye-connected source.

The phase voltages are sometimes referred to as 
“line-to-neutral voltages”, and as such may be 
expressed as      ,      , and     .

bV
~
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~
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~

anV
~

bnV
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~

Phase Voltages
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Similarly, the currents     ,      , and      are 
referred to as “phase currents” because they 
correspond to the current flowing through 
each individual phase of the wye-connected 
source.

bI
~

Phase Currents

aI
~

cI
~
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n
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Both of the figures shown to the right 
depict the same 3Φ source.  The only 
differences are that the bottom figure has 
the three phases drawn in either a vertical 
or a horizontal orientation and a that wire 
has been connected to the neutral point to 
provide a forth point of connection.

Note that the phase voltages are also shown 
in the bottom figure, but this time with 
respect to the four points of connection, 
terminals a, b, c, and n.

Wye-connected Three-Phase Source
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+

va
~

vb
~

vc
~

a

b

c

n
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The primary source terminals or connection 
points are nodes a, b, and c.

Nodes a, b, and c are sometimes defined as 
line terminals L1, L2, and L3 because 
they are the terminals to which the three 
energized conductors of a 3Φ transmission 
line will be connected. 

The line connected to the neutral-point is 
often referred to as the “neutral line” or 
the “neutral conductor”.

Wye-connected Source Terminals
a

+

+

+

va~

vb~

vc~

va~
vb~

vc~

n b

c

n
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L2

L3

N

a

+

+

+
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vb~

vc~

va~
vb~

vc~

n b

c

n

L1

L2

L3

N

A “balanced” 3Φ source is a source whose 
phase voltages have equal magnitudes and 
phase angles that are separated by 120º.

Balanced Three-Phase Voltage Source

Note that, despite slight magnitude 
differences that might exist between the 
three individual phases, most practical 

3Φ sources are assumed to be balanced.

Thus, a balanced set of phase voltages can be defined as:







240
~

120
~

~


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

VV

VV
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c

b

a
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The figure below is a plot of the balanced set of 
phase voltages:

as a function of time, with    = 0º as shown.

Balanced Phase Voltages
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As defined, the voltages are considered to 
have a “positive” phase sequence (a-b-c) 

because phase a leads b and phase b leads c.

Given the phase voltage:

determine the other phase voltages     and    .

If                 , then V =120 volts and  = 40º, thus:



bV
~

cV
~

Balanced Phase Voltages Example
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a

+
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c
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N
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vca~

A second set of voltages can also be defined 
for the 3Φ source in terms of the voltage rise 
between each pair of terminals:

a-b, b-c, and c-a.

The voltages      ,      and      are referred to as 
“line voltages” because they are the voltages 
between any pair of line terminals.

abV
~

bcV
~

caV
~

Line Voltages

The line voltages for a balanced 3Φ source are 
closely related to the source’s phase voltages. 

The line voltage defines the voltage rise from 
terminal b to terminal a, and can be expressed 
in terms of the phase voltages:

The same logic can be used to express 
all three line voltages in terms of their 
respective phase voltages:

a

n

c

b
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It turns out that, given a balanced 3Φ source 
with phase voltage: 

the line voltage for that source can be 
determined as follows:

abV
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Similarly, a complete analysis of a 3Φ source 
having the phase voltages: 

will result in the following set of line voltages:
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Note that the line voltages have equal magnitudes
and a 120º phase separation between each pair;

Thus, the line voltages maintain the same 
balanced relationship as the phase voltages:

Phase Voltages Line Voltages







240
~

120
~

~







VV

VV

VV

c

b

a







2103
~

903
~

303
~







VV

VV

VV

ca

bc

ab

Balanced Line Voltages

a

n

c

b

+

+

+

va~
vb~

vc~ vbc~

vca~

vab~

a

n

c

b

+

+

+

va~

vb~

vc~

va~
vb~

vc~

A comparison of the phase and line voltages:

reveals that the line voltages are:

• greater in magnitude, and

•  30°greater in phase angle

compared to the phase voltages.
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Given a 3Φ source with phase voltages:

determine the line voltages       ,       and      .abV
~

bcV
~

Line Voltage Example
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A single-phase load may be supplied from a  
three-phase source if the load is connected   
across two of the source’s terminals.

If the load is connected between a line terminal
and the neutral terminal, then a phase voltage 
will appear across the load.

If the load is connected between two line terminals, 
then a line voltage will appear across the load.

1Φ Voltages Available from 3Φ Source 
a

n
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Note – if the neutral terminal is not available, 
then only the line voltages can be utilized 
from the supply and not the phase voltages.
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A three-phase load consists of three individual loads that are 
connected together in a symmetrical fashion, either Wye (Y) or 
Delta (Δ), to form a composite load that can be supplied by a 
3Φ source.

A balanced 3Φ load is constructed using three loads that all have 
the same impedance value.

When a balanced 3Φ load is connected to a balanced 3Φ source, 
the resultant currents will also maintain a balanced relationship
similar to that of the phase and line voltages.

Balanced Three-Phase Loads

A wye-connected, three-phase load is 
constructed by connecting one end of the 
three individual loads to form a common 
(neutral) node.

The opposite end of the three individual 
loads provide the terminals for connection 
to a 3Φ system.

These terminals are often defined as load 
terminals T1, T2, and T3, because they 
will be connected to source terminals     
L1, L2, and L3 respectively.

ZY

ZYZY

Wye-connected Three-Phase Loads

T3

T2 T1
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A delta-connected, three-phase load is 
constructed by connecting three impedances 
together as shown to the right.

The three nodes that connect each pair of 
impedances together provide the terminals 
for connection to a 3Φ system.

These terminals may also be defined as load 
terminals T1, T2, and T3, because they will 
also be connected to source terminals L1, 
L2, and L3 respectively.

Z Z

Z

Delta-connected Three-Phase Loads

T3T2

T1

ZY ZY

ZY

ab

c

Wye-connected Three-Phase Loads
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The simple 3Φ system shown below consists of a wye-connected 
source and a wye-connected load.

The neutral-point of the source is grounded to provide a zero-volt 
reference for the system.

ZY

++

+

ZY

ZY

va
~ vb

~

vc
~

Wye-connected Loads in 3Φ Systems

Three wires or “lines” are used to connect the source terminals to 
the terminals of the Y-connected load.

A “neutral wire” can be added to connect the grounded neutral-
point of the source to the center-point of the load, holding both 
neutral points at a zero-volt potential.

ZY
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+

ZY

ZY

va
~ vb

~

vc
~

Wye-connected Loads in 3Φ Systems
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Note that the voltage potential present on each line (w.r.t. the 
neutral wire) is equal to the phase voltage of the source’s phase 
to which the line is connected.

Thus, the four-wire connection results in the presence of a phase 
voltage across each phase of the load.
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ZY

va
~ vb

~

vc
~
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~

vb
~
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~vb

~
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Wye-connected Loads in 3Φ Systems

A set of line currents (     ,     and     ) can be defined that flow 
from each phase of the source, down the lines and into the 
individual phases of the load.
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Wye-connected Load Currents
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A set of line currents (     ,     and     ) can be defined that flow 
from each phase of the source, down the lines and into the 
individual phases of the load.

A neutral current (    ) can also be defined that flows in the 
neutral wire from the load back to the source.
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~
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~
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~
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~
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Wye-connected Load Currents
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~
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cI
~

Note that the line currents may also be referred to as

• phase currents of the source, or

• phase currents of the load

because they flow through the individual phases of both the 
source and the load.
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Wye-connected Load Currents
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If the source voltages and load impedances are all known, then 
the line currents and the neutral current can all be determined 
using basic circuit theory.
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Wye-connected Load Currents

Since the phase voltages of the load and source are equal, the line 
currents can each be solved independently by applying Ohm’s 
Law at each load.
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Wye-connected Load Currents
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Furthermore, if the source voltages are balanced and the load 
impedances are all equal, then the line currents will also be 
balanced.

ZY
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~
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~

In
~ va

~vb
~

vc
~

Ia
~Ib

~

Ic
~

vc
~

 IIa
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~ IIb  240

~ IIc

Wye-connected Load Currents

The neutral current     can be determined from the node equation:

In a balanced system, the neutral current will be:
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cban IIII
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nI
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Neutral Current in 3Φ Systems

amps0)240-()120-(
~~~~

  IIIIIII cban
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In a balanced system, the line currents will always sum to zero…

 no current will flow in the neutral wire

Thus, removal of the neutral wire will theoretically have no effect 
on the system under normal operating conditions.
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Neutral Wires in 3Φ Systems

Note that, although removal of the neutral wire will not affect the 
normal operation of a balanced system, the importance of the 
neutral wire comes into play during times of abnormal operation 
(i.e. –unbalanced operation and/or fault conditions) during which 
it’s existence can greatly affect the system’s operation.

ZY

++

+

ZY

ZY

va
~ vb

~

Ia
~

Ib
~

Ic
~

??

?

Ia
~Ib

~

Ic
~

vc
~

Neutral Wires in 3Φ Systems

Both unbalanced operation 
and system faults are beyond 
the scope of this discussion.

For example, when a 
lineneutral fault 

(short-circuit) occurs, 
the existence (or not) 

of the neutral wire 
will greatly affect the 

system.
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The total complex power produced or consumed by a 3Φ source 
or load is equal to the sum of the complex powers produced or 
consumed by each of the source’s or load’s three individual 
phases.
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cba SSSS 3

Complex Power in 3Φ Systems

In the case of a 3Φ, Y-connected load, the complex powers consumed 
by each of the load’s three individual phases are:

*** ~~~~~~
cccbbbaaa IVS        IVS        IVS 
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Complex Power in Y-connected Loads
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If the system is balanced, with voltages and currents:

then:

(all three phases consume the same complex power)

   
   
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Complex Power in Y-connected Loads

Thus, the total complex power consumed by a balanced, 3Φ, 
Y-connected load will be equal to 3x the power consumed 
by any individual phase:

allowing the total complex power to be
expressed in terms of a single phase:

where:

  13 3 SSSSS cba

  IVIVS aa 3
~~

3 *
3

amps
~  IIa

volts
~ VVa

Complex Power in Y-connected Loads
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Similarly, the total complex power produced by a balanced, 
3Φ, Y-connected source will be equal to 3x the power 
produced by any individual phase:

allowing the total complex power to be
expressed in terms of a single phase:

where:

  13 3 SSSSS cba

  IVIVS aa 3
~~

3 *
3

Complex Power in Y-connected Sources

amps
~  IIa

volts
~ VVa

++

+

va
~

vb
~

vc
~

Ib
~

Ia
~

Ic
~

Given a 480V, 3Φ, Y-connected, positive-sequence, balanced 
source that is supplying a Y-connected, balanced load having 
individual per-phase impedances:

ZY = 80 + j60 Ω,

For, this system, determine:

a) all of the phase and line voltages,

b) all of the line currents, and

c) the total complex power supplied by
the source to the Y-load.

aV
~

3Φ Wye-connected Load Example
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+
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~ vb

~

vc
~
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Since the source is a Y-connected, positive-sequence, balanced 
source, the phase and line voltages will adhere to the following 
relationships:

Phase Voltages Line Voltages

The values of V and  can be determined from the information 
provided in the problem statement. 
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3Φ Wye-connected Load Example

Phase Voltages Line Voltages

Standard: if a single voltage magnitude is specified for a 3Φ source, then 
the value specified is the source’s line-voltage magnitude.

Thus, given a balanced 480V source, the magnitudes of the line and phase 
voltage can all be specified as:


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              volts4803  VVVV phaseline

3Φ Wye-connected Load Example

If the source is Y-connected with an 
accessible neutral point, then the line 

and phase voltage magnitudes are often 
specified for convenience:

I.e. – 480/277V
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Phase Voltages Line Voltages

As with any steady-state AC circuit solution, the first phase angle in a 
3Φ circuit may be chosen arbitrarily, after which all other phase angles 
(voltage and current) must be calculated based to the initial choice.

For convenience, the first angle is often chosen to be 0°. Thus, for this 
example, the angle of the phase voltage     will be set to 0°.
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3Φ Wye-connected Load Example
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 0

Phase Voltages Line Voltages

The phase and line voltages are shown in the figure below:







240277
~

120277
~

0277
~

c

b

a

V

V

V







210480
~

90480
~

30480
~

ca

bc

ab

V

V

V

ZY

++

+

ZY

ZY

va
~vb

~

vc
~

va
~

vb
~

vc
~

vab
~

vbc
~ vca

~

a

b

c

3Φ Wye-connected Load Example
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Phase Voltages Line Voltages

Now that all of the voltages have been specified in the system, the next 
step is to solve for all of the line currents that will flow in the 3Φ
system from the source to the load.

Since the system is balanced, the resultant line currents will be balanced.  
Thus, the complete set of line currents may be determined by first 
solving for one of the currents and then utilizing the balanced 
relationship in order to specify the remaining currents.
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3Φ Wye-connected Load Example

Phase Voltages Line Voltages

Applying Ohm’s Law to “phase a” of the load
results the line current:

from which the remaining line currents can be solved. 
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3Φ Wye-connected Load Example
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Phase Voltages Line Voltages

Given: 

The remaining line currents can be determined from:
Balanced Relationships Line Currents
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3Φ Wye-connected Load Example

Phase Voltages Line Voltages Line Currents

The voltages and currents are shown in the figure below:
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3Φ Wye-connected Load Example
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Phase Voltages Line Voltages Line Currents

Since the total complex power produced/consumed in a balanced, 
3Φ system is equal to 3x the complex power produced/consumed 
in a any individual phase:
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3Φ Wye-connected Load Example

Phase Voltages Line Voltages Line Currents

If desired, the complex power result:

can be broken down into its real and reactive power components:

4.13822.18433 jS 

Vars Q        Watts P 4.13822.1843 33  
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3Φ Wye-connected Load Example
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c

Z

b

a

Z Z

Delta-connected Three-Phase Loads

The simple 3Φ system shown below consists of a wye-connected 
source and a delta-connected load.

The neutral-point of the source is still grounded to provide a zero-
volt reference for the system.
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+
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~ vb
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vc
~

Z

ZZ

Delta-connected Loads in 3Φ Systems
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Three “lines” are also used to connect the source terminals to the 
terminals of the Δ-connected load.

Note that no neutral wire can be connected to the load because the 
Δ-connected load has no central node to which the wire can be 
symmetrically connected. 
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Delta-connected Loads in 3Φ Systems

The voltage potential between each pair of lines is equal to the 
line voltage of the source.
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Delta-connected Load Voltages
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The voltage potential between each pair of lines is equal to the 
line voltage of the source.

Since each phase of the Δ-connected load connects across a pair 
of lines, the three-wire connection provides a line voltage
across each phase of the load.

Delta-connected Load Voltages

A set of line currents (     ,     and     ) was defined to flow in the 
lines from the source to the load.

Although the line currents flow through each phase of the source, 
they do not flow through the individual phases of the Δ-load.
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Delta-connected Load Currents
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In order to fully characterize the Δ-connected load’s operation, a 
set of phase currents (     ,      and      ) that flow through the 
individual phases of the load must also be defined.
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Delta-connected Load Currents
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If the line voltages and load impedances are known, then the 
phase currents of the load can each be solved independently 
by applying Ohm’s Law for each phase:
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Delta-connected Load Currents
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Furthermore, if the source voltages are balanced and the load 
impedances are all equal, then the phase currents of the load 
will also be balanced.

 IIab
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Delta-connected Load Currents

Once the phase currents of the load have been determined, the 
line currents flowing into the load may also be determined by 
solving a node equation for each of the three connection points 
to the load.

Node a:

Node b:

Node c:

caaba III
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abbcb III
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b c

Delta-connected Load Currents
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Given the balanced set of phase currents: 

the line current      can be determined as follows:
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Delta-connected Load Currents
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Since the phase currents are balanced: 

the resultant line currents will also be balanced,
allowing a complete set of phase-to-line current
relationships to be defined:

cac

bcb

aba

II

II

II

~
)303(

~

~
)303(

~

~
)303(

~







 IIab

~   120
~ IIbc   240

~ IIca

Delta-connected Load Currents
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The phase-to-line current relationships can 
then be used to specify a complete set of 
currents for a balanced, Δ-connected load 
as follows:

Phase Currents Line Currents
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Phase ↔ Line Current Relationship

Note – to correspond with the line-currents 
defined for the Y-connected load, the phase 
and line current expressions can be rewritten 
such that:
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In the case of a 3Φ, Δ-connected load, the complex power 
consumed by each of the load’s three individual phases are:

*** ~~~~~~
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Complex Power in Δ-connected Loads

If the system is balanced, with voltages and currents defined as:

then:
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Complex Power in Δ-connected Loads
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If the system is balanced, with voltages and currents defined as:

then:

all three phases will 
consume equal 
complex power. 
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Complex Power in Δ-connected Loads

Thus, the total complex power consumed by a balanced, 3Φ, 
-connected load will be equal to 3x the power consumed by 
any individual phase:

allowing the total complex power to be
expressed in terms of a single phase:

where:
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Complex Power in Δ-connected Loads
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Given a 480V, 3Φ, Y-connected, positive-sequence, balanced 
source that is supplying a Δ-connected, balanced load with 
individual phase impedances

ZΔ = 80 + j60 Ω,

++

+

va
~ vb

~

vc
~

Z

ZZ

3Φ Delta-connected Load Example

Given a 480V, 3Φ, Y-connected, positive-sequence, balanced 
source that is supplying a Δ-connected, balanced load with 
individual phase impedances

ZΔ = 80 + j60 Ω,

Determine:
a) all of the phase and line voltages in the system,

b) all of the phase and line currents in the system, and

c) the total complex power provided by the source to the Δ-connected load.

Note – choose the angle of the phase voltage       to be the 0° reference 
angle for the system.

aV
~

3Φ Delta-connected Load Example
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Phase Voltages Line Voltages

Since the source defined in this example is the same as that in the 
Y-connected load example, the phase and line voltages shown above 
are provided without the logic required to obtain those values.
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3Φ Delta-connected Load Example

Phase Voltages Line Voltages

The phase and line voltages are shown in the figure below:
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3Φ Delta-connected Load Example
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Line Voltages

Note that although the phase and line voltages both exist at the 
Y-connected source, only the line voltages appear at the Δ-connected 
load due to the absence of a neutral point. 
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3Φ Delta-connected Load Example

Line Voltages

By applying Ohm’s Law to the load connected across 
nodes a and b, the phase current can be determined:

from which the remaining phase currents can then be solved.
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3Φ Delta-connected Load Example
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Line Voltages

Given: 

The remaining phase currents can be determined from:
Balanced Relationships Phase Currents
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3Φ Delta-connected Load Example

Line Voltages Phase Currents

Additionally: 

The line currents can be determined from:
Balanced Relationships Line Currents
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Phase Voltages Line Voltages Phase Currents Line Currents

The voltages and currents are shown in the figure below:
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Phase Voltages Line Voltages Phase Currents Line Currents

Now that all of the voltages and currents have been specified in the 
system, the next step is to solve for the total complex power that 
will be provided by the 3Φ source to the 3Φ load.
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Phase Voltages Line Voltages Phase Currents Line Currents

Since the total complex power consumed by a balanced Δ-connected 
load is equal to 3x the complex power consumed by each individual 
phase of the load:
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Phase Voltages Line Voltages Phase Currents Line Currents

If desired, the complex power result:

can be broken down into its real and reactive power components:
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Phase Voltages Line Voltages

Based on the results of the previous examples:

If a balanced 3Φ source is supplying both a Y-connected load and a 
Δ-connected load, each having the same per-phase impedances:

ZΔ = ZY

then the Δ-connected load will consume 3x more power than the            
Y-connected load.
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Phase Voltages Line Voltages

It can also be proven that:

If a balanced 3Φ source is supplying both a Y-connected load and a 
Δ-connected load, but the per-phase Δ-impedances are 3x larger 
than the per-phase Y-impedances:

ZΔ = 3·ZY

then the Δ-connected load and the Y-connected load will consume the 
same amount of power.
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