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Electrical Principles

Analysis of AC Circuits

=8
850,

™
]
—

18,0202 %258
2D T0se. 2e~evy
20 02 2% % 0

Analysis of AC Sourced R-L-C Circuits

For example: Given a simple, series-connected, R-L-C, AC circuit,
a 2"d-order differential equation must be solved in
order to determine the source current.

But, provided that the source is sinusoidally-varying, a Phasor
Analysis can be performed on the circuit, the method of which
allows for the V-1 relationships for all three elements to be
linearized into simple “Ohm’s Law” based relationships.
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Phasor Representation of Sine Waves

A phasor is a representation of a sine-wave whose magnitude,
phase and frequency are constant.

Phasors reduce the dependency of these parameters to three
independent factors, thus allowing for the simplification of
certain types of calculations.

It turns out that, for steady-state AC circuits, the time dependency
of the sine-waves can be factored out, reducing the non-linear
differential equations required for their solution to a simpler set
of linear, algebraic equations.

Phasors and AC Voltages

The sinusoidal voltage:

v(t) =2V -sin(w-t + @)

may be defined in the form of a phasor voltage:

V=Ve =VL$

in which the voltage is expressed as a complex number in “polar”
form, having the RMS magnitude 7 and the phase angle ¢.

(Note — although the phasor value may be expressed in terms of “peak”
magnitudes, RMS voltage magnitudes will be utilized in this
course unless specifically stated otherwise.)




Phasors and AC Voltages

For example, given the sinusoidal voltage:
v(¢) =100-sin(377-¢t+30°) volts
which may be expressed in terms of its RMS magnitude:
v(£) =+/2-70.7-sin(377-¢+30°) volts
The phasor representation of this voltage is:

w() < V=707eF =70.7£30° volts

such that:  30° =30° -M = % radians

360°
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Phasors and AC Currents

The sinusoidal current:
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i(f) =2 -1-sin(w-t+9)

may also be defined in the form of a phasor current:

I =1 =1/8

in which the current is expressed as a complex number in “polar”
form, having the RMS magnitude 7 and the phase angle &.

(Note —RMS current magnitudes will also be utilized in this course unless
specifically stated otherwise.)




Impedance

The impedance of a load provides a measure of
the response that the load will have when
supplied by a steady-state AC waveform.

Specifically, the impedance value of a load, Z, is
defined as the ratio of the phasor voltage that is
applied across the load over the phasor current
that flows through the load:

~

7
Z - = Q
- (@
‘o Impedance
.:: Based on the impedance expression:
20 %
90 1

an Ohm’s Law type of relationship between
the phasor values of the load voltage and
current can be defined:

V=127
which means that any of the DC circuit theory that was derived
based on Ohm’s Law can also be applied to steady-state AC

circuits whose loads are expressed as impedances and whose
voltages and currents are expressed by their phasor values.




Impedance

Thus, given the phasor values of the load voltage
and current:

V=V/¢ 1=1/6

the impedance, Z, can be expressed in terms of
their phasor values as :

Z:\Z\zezzzﬂzzz(qﬁ—&)
I Iz 1
where: 1Z| :? 0=¢-5

Note — Impedance is typically expressed as a complex number written in “rectangular” form: Z=R+jX

Impedance of a Resistor

Given the voltage across a resistor:

vo(£) =2V, sin(w-t + §)

the current flowing through the resistor will be:

iR(l)=\/§-%-Sin(a)-t+¢)

When expressed as phasors, the resistor’s voltage

vp(t) =1, (1) R

0.0 and current can be rewritten as:
.“ ~ ~ V
‘0‘0 Ve=VZ¢ I, :?RL¢




Impedance of a Resistor

Based on the values of its phasor voltage and current:

~ ~ ¥
V=V Z$ I =?R4¢

the impedance of the resistor can be defined as:

?—R: Veld =RZ0°=R+ jO
R

Vi
] v

(%)

Thus, the impedance of a resistor is equal to its
resistance, which is a purely real value:

Z,=R

Z,=
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Impedance of a Resistor

Thus, not only does Ohm’s Law hold true for
resistors that are supplied with both DC voltages
and time-varying (AC) voltages:

Vi=1z R vp(t) =i, (2)-R

Ohm’s Law also holds true for resistors whose
voltages and currents are expressed as phasors:

Vo=1,-Z,=1I,-R

V(1) =in (1) R

Vo=1I,-R




Impedance of an Inductor

Given the voltage across an inductor:

v, (£) =2V -sin(w-t + ¢)

+
the current flowing through the inductor will be: \7( L
i (1) =2 —— sin(e-t + §°—90°)
w-L
When expressed as phasors, the inductor’s voltage PG
and current can be rewritten as: n()=L dt
% 7 =Lt /4000
VL:VLZ¢ L_a)-L ¢_
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Impedance of an Inductor
Based on the inductor’s phasor voltage and current:

VL

~

vo=viZ¢ L= L9907 .
the impedance of the inductor can be defined as: Vv @ -
: (a,.LLJA’ﬁ_gOO diy (1)
v ()=L-——

: : dt
which can be expressed in rectangular form as:

Z, =(0-L)£+90°=0+ jo-L=jo-L




Impedance of an Inductor
Thus, based on its phasor voltage and current:
- ~ Vv,

Vo=V l¢ L=t Zg=00° )
the impedance of the inductor can be defined as: v @ L
Z, =(0-L)£+90°= jo-L
which is a positive imaginary number. v (=L di (1)
dt

And, when expressed as an impedance, Ohm’s Law -~ -
holds true for an inductor whose voltage and current V. =1,-Z,
are expressed as phasors.
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Impedance of an Capacitor

Given the voltage across a capacitor:
v () =2 -V -sin(w-1 + @)

the current flowing through the capacitor will be:

i.(t) =2V -w-C-sin(w-1+¢°+90°)

When expressed as phasors, the capacitor’s voltage
and current can be rewritten as:

oy dve ®)
i-(t)=C 5

Vo=V.L$  I.=Ve-@-CLH+90°




Impedance of an Capacitor

Based on the capacitor’s phasor voltage and current:
V.=V./p  I.=V.-@-CLP+90°

the impedance of the capacitor can be defined as: v

Z,==== = _ 1 Z-90°
I. V-0 CLp+90° w-C dv. (1)
ic(t):C-#
which can be expressed in rectangular form as:
1 1 1
Z,=——/-90°=0—-j——=—j——
© wcC ]a)-C ]a)-C
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Impedance of an Capacitor

Thus, based on its phasor voltage and current:
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V.=V.¢ 1.=Ve-@-CLP+90°

the impedance of the capacitor can be defined as: v

1 1
. =——/-90°=—j ——
" wC ]a)-C

which is a negative imaginary number.

And, when expressed as an impedance, Ohm’s Law ~ -
holds true for a capacitor whose voltage and current Ve
are expressed as phasors.




Reactance

Reactance defines the manner in which inductive and capacitive
loads react to a steady-state sinusoidal voltage.

The reactance of an inductive or capacitive load is equal to the
magnitude of the load’s impedance value.

Therefore:
» the reactance of a resistoris: X,=0Q

« the reactance of an inductor is; X:=w-L Q

« the reactance of a capacitor is: Xc = 1 g

w-C

Complex Impedances

A complex impedance Z is an impedance can have
both resistive and reactive (inductive or capacitive)
components, and may be expressed in the form:

Z=R+jX Z—R+jX[L|

where: R is the resistive component of the load, and
X is the reactive component of the load.

Note: e the impedance of aresistoris: 7, =R
« the impedance of an inductor is: 7, = jX, = j(w-L)

« the impedance of a capacitoris: Z.=—jX,. = _j(LC)
a).
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Phasor Analysis of AC Circuits

If a voltage source having the phasor value:
V=V/Z¢
Is applied across the complex impedance:

Z=R+jX

then the phasor value of the current may be
solved by applying Ohm’s Law:

VZg
R+ jX

=1/6

7oV
A
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The Range of Impedance Values

Given a complex impedance:

Z=R+jX _
* The “real” portion of the impedance can be in 1
the range: y ,
0 <R <+ @
* The “imaginary” portion of the impedance can

be in the range:
-0 <X <+

iIf R and X relate only to passive loads.
(I.e. — resistors, inductors, and/or capacitors)
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Voltage & Current Phase Angles
If the impedance is expressed in polar form:
Z=R+jX =|z|26°
then the angle @ will fall within the range:
—90° <6< +90°.
And, since:

[ Vs Y o180

Z |zjze° |z|
the phase angle of the current will be within
+90° of the phase angle of the voltage:

#°—90° < 5° < ¢°+90°
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Phasor Analysis Example

Perform a phasor analysis of the circuit shown below in order to
determine the phasor values of the source current and the
resistor voltage:
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L=70mH C=15nF >

+

v(t) @ R=50Q ;\7R

S
o®
=

v(t) = \/5-24-sin(a)-t+300) volts
f=60H:z
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Phasor Analysis Example

Step 1 — Express the source voltage by its phasor value and all
circuit elements as impedances.

W(t) =2 - 24 sin(w- +30°) volts Z, = jX, = jo-L= j(377-70x10°)=+,26.39 Q
f =60 Hz 1 1
_ - Z.=jX.=—j =—j =—j44.21Q
w=2-7-f ~377 rad/sec c=JAc ]a)-C ]377'60x10—6 J
V =24/30° = 24¢"™ volts Z,=R=50Q
I N ” I wm ”
. L=70mH C=60uF » . 2526399 7 __s010 N
v() @ R=50Q \7R ) Zéé:tgso O@ Z:=50Q \7p

{
zZZ8
=4

Phasor Analysis Example

Step 2 - Solve for the phasor value of the source current.

Ca

2 Vv
CZ,4Z.+7Z,
~ 24./30°

" +26.39— j44.21+50
24300

50— /17.82
=|0.452.£49.6° amps

I =

zZ

Total

T
MM
2.=j26.39Q

1l
"
. Ze=-j44.21Q *
o 1.
24230 @ Z:=500 & Ve

volts
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Phasor Analysis Example
Step 3 — Solve for the phasor value of the resistor voltage.

AR M ——
ZEq L, +Z.+7Z,
50
50— j17.82

=|22.6.£49.6° volts

= 24./30°-

| 1l

il
. 25126390 5 -_iu4010 .

244300@ Z:=500 :;\7R

volts

{
zZZ8
=4

Phasor Analysis Example

Step 4 - If needed, convert the phasor values into sinusoidal
expressions.

'-
:30'05\

1 =0.452./49.6° amps
i(t) = \/2.0.452-sin (377-t+49.6°) amps

V, =22.6./49.6° volts
vo(t) =2 -22.6-5in (3771 +49.6°) volts

T
MM
2.=j26.39Q

1l
"
. Ze=-j44.21Q *
o 1.
24230 @ Z:=500 & Ve

volts
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Phasor Analysis Example #2

Perform a phasor analysis of the circuit shown below in order to
determine the phasor value of the voltage across resistor R,:

T R1=200Q L3=50mH
A
v

+

v(t) @ C2:5uF.|_ Ri=50Q A

if: v(t) =~/2 - 24-sin(w- £ +30°) volts
@ =1000 rad/sec

Phasor Analysis Example #2

Step 1 — Express the source voltage by its phasor value and all
circuit elements as impedances.

v(£) =+/2 - 24-sin(e-£ + 30°) volts 2,=20Q .
@ =1000 rad/sec , = ][Wj
V =24./30° = 24¢7% volts 23 — ](1000 . 50)(1073): +]50 19
Z, =500

= 2000

R1=20Q L3=50mH T 71=200Q Z3=j50Q
A " LA mn

'8
-0
.

v J. v J.
.
v(t) @ C2=5uF Re=50Q Vi —l 24430 @ Z2=-2000Q 24=50Q Vr

| |
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Phasor Analysis Example #2

Step 2 — Reduce the network by combining Z, and Z, in series.

Zy=Zy+Z, =50+ j50Q

T  z=20Q Z3=j50Q T z=20Q
MN o IY#Y\ MN
+ %

—J

+
% - o Z3wa=
@ Zz:'jZOOQT % 7.-500 Vi 2‘\‘/3?50 @ zz:.jzoon-|- sojjgog [

Phasor Analysis Example #2

Step 3 — Further reduce the network by combining Z, and Z5,, in
parallel.

-1 -1
Zyyara) = i+ L = 1 + L =80+ ;40 Q
Z, Z,, —j200 50+ ;50

T  zi=20Q T zi=200Q
A A
\'2 v
. L Parallel -~ 244300_‘_
s 1 Zau= Za2)(3+4) =

16




Phasor Analysis Example #2

Step 4 — Solve for the voltage across Z,; ;.4

7 = 24300 Caes

1t 200
80+ ;40
20+80+ j40

=19.9./34.8° volts

Note that the nodes across which Z, 5., are connected also exist in
the original circuit.

= 24./30°-

T  zi=20Q Z3=i50Q T z=200
v v
/ J. 24./30°F z
~ ~ ~ 2||(3+4) =
@ Zz=-j200§2-|_ Vs Ze=50Q Vr ‘\l/éts @ V| go+ja0Q [:I

Phasor Analysis Example #2

Step 5 — Utilize V, to determine the resistor voltage V5.

I7R = I7x ' Z
Z;+Z,
=19.9./34.8°- >0
50+ 450

={14.1/-10.2° volts

T z=20Q Z3=j500Q T z=200
A " A
VWV VWV
F J_ 24 /30°F z
~ ~ = | Zeiea=
@ 22:-jzoon.|. Vi 24=50Q& |Vr Vglts @ Vi| s04ja002 []
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