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ECET 3000
Electrical Principles

Analysis of AC Circuits

For example: Given a simple, series-connected, R-L-C, AC circuit, 
a 2nd-order differential equation must be solved in 
order to determine the source current.

But, provided that the source is sinusoidally-varying, a Phasor 
Analysis can be performed on the circuit, the method of which 
allows for the V-I relationships for all three elements to be 
linearized into simple “Ohm’s Law” based relationships.

Analysis of AC Sourced R-L-C Circuits
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A phasor is a representation of a sine-wave whose magnitude, 
phase and frequency are constant.

Phasors reduce the dependency of these parameters to three 
independent factors, thus allowing for the simplification of 
certain types of calculations.

It turns out that, for steady-state AC circuits, the time dependency 
of the sine-waves can be factored out, reducing the non-linear 
differential equations required for their solution to a simpler set 
of linear, algebraic equations.

Phasor Representation of Sine Waves

The sinusoidal voltage:

may be defined in the form of a phasor voltage:

in which the voltage is expressed as a complex number in “polar” 
form, having the RMS magnitude V and the phase angle  .

(Note – although the phasor value may be expressed in terms of  “peak”
magnitudes, RMS voltage magnitudes will be utilized in this 
course unless specifically stated otherwise.) 

)sin(2)(   tVtv

  VVeV j~

Phasors and AC Voltages
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For example, given the sinusoidal voltage:

which may be expressed in terms of its RMS magnitude: 

The phasor representation of this voltage is:

such that:

volts)30377sin(100)(  ttv

volts307.707.70
~

)( 6 
jeVtv

Phasors and AC Voltages

volts)30377sin(7.702)(  ttv
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The sinusoidal current:

may also be defined in the form of a phasor current:

in which the current is expressed as a complex number in “polar” 
form, having the RMS magnitude I and the phase angle  .

(Note –RMS current magnitudes will also be utilized in this course unless 
specifically stated otherwise.) 

)sin(2)(   tIti

  IIeI j~

Phasors and AC Currents
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The impedance of a load provides a measure of 
the response that the load will have when 
supplied by a steady-state AC waveform.

Specifically, the impedance value of a load, Z, is 
defined as the ratio of the phasor voltage that is 
applied across the load over the phasor current
that flows through the load:
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Based on the impedance expression:

an Ohm’s Law type of relationship between 
the phasor values of the load voltage and 
current can be defined:

which means that any of the DC circuit theory that was derived 
based on Ohm’s Law can also be applied to steady-state AC 
circuits whose loads are expressed as impedances and whose 
voltages and currents are expressed by their phasor values.
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Thus, given the phasor values of the load voltage 
and current:

the impedance, Z, can be expressed in terms of
their phasor values as :

where:

Note – Impedance is typically expressed as a complex number written in “rectangular” form:  Z=R+jX
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Given the voltage across a resistor:

the current flowing through the resistor will be:

When expressed as phasors, the resistor’s voltage 
and current can be rewritten as:

Impedance of a Resistor
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Based on the values of its phasor voltage and current:

the impedance of the resistor can be defined as: 

Thus, the impedance of a resistor is equal to its 
resistance, which is a purely real value:  

Impedance of a Resistor
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Thus, not only does Ohm’s Law hold true for 
resistors that are supplied with both DC voltages 
and time-varying (AC) voltages:

Ohm’s Law also holds true for resistors whose 
voltages and currents are expressed as phasors:

Impedance of a Resistor
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Given the voltage across an inductor:

the current flowing through the inductor will be:

When expressed as phasors, the inductor’s voltage 
and current can be rewritten as:

Impedance of an Inductor
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Based on the inductor’s phasor voltage and current:

the impedance of the inductor can be defined as:

which can be expressed in rectangular form as:  

Impedance of an Inductor
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Thus, based on its phasor voltage and current:

the impedance of the inductor can be defined as:

which is a positive imaginary number.

And, when expressed as an impedance, Ohm’s Law 
holds true for an inductor whose voltage and current 
are expressed as phasors.

Impedance of an Inductor
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Given the voltage across a capacitor:

the current flowing through the capacitor will be:

When expressed as phasors, the capacitor’s voltage 
and current can be rewritten as:

Impedance of an Capacitor
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Based on the capacitor’s phasor voltage and current:

the impedance of the capacitor can be defined as: 

which can be expressed in rectangular form as:  

Impedance of an Capacitor
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Thus, based on its phasor voltage and current:

the impedance of the capacitor can be defined as:

which is a negative imaginary number.  

And, when expressed as an impedance, Ohm’s Law 
holds true for a capacitor whose voltage and current 
are expressed as phasors.

Impedance of an Capacitor
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Reactance defines the manner in which inductive and capacitive
loads react to a steady-state sinusoidal voltage.

The reactance of an inductive or capacitive load is equal to the 
magnitude of the load’s impedance value.

Therefore:

• the reactance of a resistor is:

• the reactance of an inductor is:

•  the reactance of a capacitor is:
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A complex impedance Z is an impedance can have 
both resistive and reactive (inductive or capacitive) 
components, and may be expressed in the form:

where: R is the resistive component of the load, and
X is the reactive component of the load. 

Note: • the impedance of a resistor is:

• the impedance of an inductor is:

• the impedance of a capacitor is:

Z=R+jXjXRZ 

Complex Impedances












C
jjXZ CC 

1

 LjjXZ LL  

RZR 



11

If a voltage source having the phasor value:

is applied across the complex impedance:

then the phasor value of the current may be 
solved by applying Ohm’s Law:

Z
+







 I
jXR

V

Z

V
I

~
~

V
~

I
~

Phasor Analysis of AC Circuits
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Given a complex impedance:

 The “real” portion of the impedance can be in 
the range:

0 ≤ R ≤ +∞

 The “imaginary” portion of the impedance can 
be in the range:

–∞ ≤ X ≤ +∞

if R and X relate only to passive loads.
(I.e. – resistors, inductors, and/or capacitors) 
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If the impedance is expressed in polar form:

then the angle  will fall within the range:

–90° ≤  ≤ +90°.

And, since:

the phase angle of the current will be within 
90 of the phase angle of the voltage: 

Voltage & Current Phase Angles
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Perform a phasor analysis of the circuit shown below in order to 
determine the phasor values of the source current and the 
resistor voltage:

if:

Phasor Analysis Example
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v(t)

+

R = 50 
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Step 1 – Express the source voltage by its phasor value and all 
circuit elements as impedances.

Phasor Analysis Example
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Step 2 – Solve for the phasor value of the source current.

Phasor Analysis Example
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+

ZR = 50 
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Step 3 – Solve for the phasor value of the resistor voltage.

Phasor Analysis Example
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Step 4 – If needed, convert the phasor values into sinusoidal 
expressions.

Phasor Analysis Example
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Perform a phasor analysis of the circuit shown below in order to 
determine the phasor value of the voltage across resistor R4:

if:
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Phasor Analysis Example #2
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Step 1 – Express the source voltage by its phasor value and all 
circuit elements as impedances.

Phasor Analysis Example #2
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+

Z1 = 20 

Z4 = 50 

Z3 = j50 

Z2 = -j200 
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Step 2 – Reduce the network by combining Z3 and Z4 in series.

Phasor Analysis Example #2
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Step 3 – Further reduce the network by combining Z2 and Z3+4 in 
parallel.

Phasor Analysis Example #2
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+

Z1 = 20 

Z2||(3+4) =
80+j40 
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Step 4 – Solve for the voltage across Z2||(3+4).

Note that the nodes across which Z2||(3+4) are connected also exist in 
the original circuit.

Phasor Analysis Example #2
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Step 5 – Utilize Vx to determine the resistor voltage VR .

Phasor Analysis Example #2
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