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ECET 3000
Electrical Principles

Introduction to AC Circuits

DC voltages and DC currents, such as those supplied by an ideal 
battery, remain constant in time under steady-state conditions.

On the other hand, AC voltages and AC currents, have magnitudes 
that vary in a periodic manner under steady-state conditions.

Note – Although the term “AC” actually stands for “Alternating Current”, 
it is used to describe both time-varying voltages and currents
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The most common type of AC voltages (and currents) are those 
that vary in a sinusoidal manner, as shown in the figure below.

Sinusoidally-varying AC voltages and currents are typically 
created either by rotating machines (generators) or by electronic 
devices (AC power supplies). 

AC Voltage Sources

time

)(tv

The circuit element typically used to denote a 
sinusoidally-varying AC voltage source is shown to 
the right.

Note that, for other types of AC sources (such as 
square-waves), one cycle of the AC waveform is 
typically displayed within the circular region.
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The “+” sign is used to define the direction of the 
instantaneous voltage-rise (potential force) provided 
by the source, as defined by the function v(t).

v(t)

+

AC Voltage Sources

Note that, when the function goes “negative”, the voltage-rise 
(potential force) provided by the source is actually in the 

opposite (negative) direction.

time

)(tv

Since both the magnitude and sign of the voltage 
potential provided by the “AC” source vary with 
time, taking on both positive and negative values, 
the magnitude and direction of the resultant current 
will also vary with time…

Thus the term  Alternating Current

v(t)
+

i(t)

AC Voltage Sources

time

)(ti

5

6



4

Note that the 
frequency

of the voltage is:

and the period
of the voltage is:

The voltage potential of an AC source may be defined 
as: 

where: is the peak magnitude of the voltage,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the voltage waveform.

)sin()(   tVtv peak
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Steady-State AC Voltage Sources
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Similarly, the current produced by the AC source may 
be defined as: 

where: is the peak magnitude of the current,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the current waveform.

peakI

Steady-State AC Voltage Sources
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Note that the 
frequency

of the current is:

and the period
of the current is:
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)sin()(   tIti peak
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Ohm’s Law defines the voltage/current relationship 
for a resistive load.  This relationship holds true for 
all types of voltages and currents, including both 
AC and DC waveforms.

 If a time-varying current iR(t) is flowing through 
a resistor, then the resistor will develop a time-
varying voltage vR(t) that opposes the flow of 
current, as defined by the relationship:

+
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AC Sources and Resistive Loads

Given a resistor whose voltage is:

the current flowing through the resistor must be:

)sin()(   tVtv peakR

)sin(

)sin()(
)(










t
R

V

R

tV

R

tv
ti

peak

peakR
R

+

vR(t)

-

iR(t)

R

AC Sources and Resistive Loads

9

10



6

Thus, for a resistive load:

)sin()(   tVtv peakR
+

vR(t)

-

iR(t)

R

AC Sources and Resistive Loads
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Thus, for a resistive load:

Note that, the voltage and current magnitudes follow 
the Ohm’s Law relationship:

,

while the sinusoidal expressions remain unchanged.

)sin()(   tVtv peakR
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Thus, for a resistive load:

Based on this result, it can be seen that both the 
frequency and the phase angle of the resistor 
current are equal to those of the applied voltage…

)sin()(   tVtv peakR

)sin()(   t
R

V
ti peak

R

+

vR(t)

-

iR(t)

R

AC Sources and Resistive Loads

For this reason, AC circuits containing resistive loads      
are often analyzed in terms of the magnitudes of the 

voltages and currents.

And, since Ohm’s Law holds true for resistive loads 
supplied with AC voltages,

all of the basic circuit theory derived for DC circuits 
can also be applied to AC, resistor-based circuits:

• Series and Parallel Equivalent Resistances

• Kirchhoff’s Voltage and Current Laws

• Voltage and Current Dividers

• The Reduce & Return Approach for solving
Series-Parallel Circuits
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AC Sources and Resistive Loads
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In electric circuits, power can be defined as the rate
at which electric energy is either produced or 
consumed by an element within the circuit.

Power may be calculated in terms of the voltage and 
current waveforms associated with a specific circuit 
element by:

(Watts)

where: provides the instantaneous rate that an 
element either produces or consumes    
electric energy at any time t.

Power in AC Circuits

)()()( titvtp 

)(tp

Although it is actually the 
electric energy that is either 
being produced or consumed 

by the circuit elements, 
power is often casually 

referred to as being either 
produced or consumed within 

an electric circuit.

v(t)

i(t)

+

v(t)

i(t)

+

Note that the expression:

(Watts)

defines the power “produced” by an element when 
the current is defined in the same direction as the 
voltage-rise across the element.

But, if the current is defined in the opposite direction 
as the voltage-rise across an element, then p(t)
defines the power “consumed” by that element. 

)()()( titvtp 

Power in AC Circuits

v(t)

i(t)

“Producing Power”

“Consuming Power”
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In the case of an AC source where:

the general expression for power produced by the 
source is:      

)sin()(   tIti peak

)sin()(   tVtv peak

)sin()sin(

)()()(

 



ttIV

titvtp

peakpeak

Power from an AC Source

v(t)

i(t)

+

Since the power expression p(t) is actually quite complex, it may by useful to 
first consider the case where the voltage source is applied to a purely resistive load

in order to better understand the true nature of the power expression.

v(t)

+

i(t)

RvR(t)

iR(t)

If an AC source is connected to a resistive load, 
such that:

then the power consumed by the resistor will be:      

)sin()(   tIti peakR

)sin()(   tVtv peakR

)(sin

)()()(

2  



tIV
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AC Power and Resistors
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+
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iR(t)

Note that the resistor’s 
voltage and current have 
the same phase angle…

I.e. – there is no phase shift 
between the voltage and 

current for a purely 
resistive load.
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The figure below shows the power waveform:

plotted along with the resistor’s voltage and 
current waveforms:

)(sin)( 2   tIVtp
peakpeakR

AC Power and Resistors

v(t)

+

i(t)

RvR(t)

iR(t)

Vpeak

Ipeak

vR(t) iR(t) pR(t)

As shown, power supplied to the resistor is 
always non-negative, which is expected since 
a resistor can only consume electric power.

AC Power and Resistors

v(t)

+

i(t)

RvR(t)

iR(t)

Vpeak

Ipeak

vR(t) iR(t) pR(t)

Since p(t) is the power “consumed” by the resistor, 
a negative value would imply that power is actually being 
“produced” by the resistor, a result which can not occur.
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Additionally, it can be seen that the power 
waveform varies periodically, but with a 
frequency that is 2x larger than that of the 
applied voltage or the resultant current.

AC Power and Resistors

v(t)

+

i(t)

RvR(t)

iR(t)

Vpeak

Ipeak

vR(t) iR(t) pR(t)

One Cycle of Voltage and Current; Two Cycles of Power

Vpeak

Ipeak

vR(t) iR(t) pR(t)

The peak magnitude of the AC power waveform is:

This should not be confused with the constant power 
provided to a resistor by a DC source.

peakpeakpeak
IVP 

v(t)

+

i(t)

RvR(t)

iR(t)

AC Power and Resistors

Ppeak
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To help clarify the characteristics of the resistor’s
AC power waveform, it is useful to rewrite the 
power expression:

(by utilizing the trig-identity sin2x = ½ꞏ[1 – cos2x]):

)2cos(
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AC Power and Resistors

v(t)

+

i(t)

RvR(t)

iR(t)

Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The first term is a constant that relates to the 
average value of the power that is consumed 
by the resistor.
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22

)( t
IVIV
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AC Power and Resistors
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average

pR(t)

Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The second term is a sinusoidal term that varies 
at 2x the source frequency and provides the 
fluctuation in the power waveform.

)2cos(
22

)( t
IVIV

tp peakpeakpeakpeak

R 





  v(t)

+

i(t)
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AC Power and Resistors

In AC systems, it is typically the average value of 
the power that is desired.

This average power value is called Real Power.

The real power consumed by a resistive load is:

(Watts)
2

)]([
)(

peakpeak

AC

IV
tpAvgP RR




Real Power

v(t)

+

i(t)

RvR(t)

iR(t)

The average value of the AC power is typically of concern because the operational characteristics 
of many AC loads are based upon the average power that the loads consume.

For example – an incandescent lightbulb is primarily a resistive load.  The amount of light that the bulb emits 
is based upon the temperature of the bulb’s filament.  But, due to the finite rate at which the 
bulb can dissipate the heat it produces, the bulb maintains an average temperature which is 

based upon the average power that be bulb consumes.
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Note that the real power consumed by the resistor 
is ½ that of the peak power value:  

(Watts)

This result is expected since the power waveform 
fluctuates evenly between zero and its peak value.

22)(

peakpeakpeak
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
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+

i(t)

RvR(t)

iR(t)

AC vs. DC Power to Resistors

There are some AC loads for which this 
fluctuating power may be of concern.

For example, the torque produced by a 
single-phase AC motor fluctuates 
proportionally with the amount of 

electric energy it converts to mechanical.  
But, this may be detrimental if the 

mechanical system that the motor is 
driving is sensitive to vibrations.

Ppeak

average

pR(t)

But, this result can also be confusing if comparing 
the power consumed in AC and DC circuits:

Also, based upon the results, given an AC source   
whose peak value is equal to the magnitude of a 
DC source, the AC source is only ½ as effective 
as the DC source in terms of the average power 
supplied to a resistor:

(Watts)

If : Vpeak=VDC 
(Watts)
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AC vs. DC Power to Resistors
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Since the average AC power is proportional to the 
square of the source’s peak voltage:

if the peak value of the AC voltage is increased 
such that it is       times larger than the DC voltage:

then the AC and DC sources will supply the same 
average power to the resistor.

DCpeak
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Effective Voltage
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Thus, an effective voltage can be defined for a 
sinusoidally-varying AC source, such that:

Note that the effective value of the AC source is 
equal to the RMS (root-mean-squared) value of 
the source voltage:

2
peak

effective

V
V 

Effective / RMS Voltage Magnitudes

2
)(

1

0

2 peak
T

RMSeffective

V
dttv

T
VV  

v(t)

+

i(t)

RvR(t)

iR(t)

An AC source’s effective or RMS voltage 
is equal to the magnitude of the DC source 
that will deliver the same average power 

to a resistor as the AC source.

This statement holds true for 
all periodic AC sources, not 

just sinusoidally-varying 
sources.

v(t)
Note that this is the reason why most handheld voltmeters 
display the RMS magnitude of AC voltages and currents.
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FOR EXAMPLE:

A 100Vpeak AC source has an effective voltage of:

since it delivers an average power of 50W to a 
100 resistor:

which is equal to that from a 70.7V DC source:

volts
V

VV peak

RMSeffective
7.70

2

100

2


Watts
R

V
P peak

R AC
50

1002

100

2

22
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







Watts
R

V
P DC

R DC
50

100

7.70 22
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

v(t)

+

i(t)

RvR(t)

iR(t)

+
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-
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+

R

IR
+

VR

-

Effective Voltage

The voltage waveform may be expressed in terms 
of its RMS voltage magnitude: 

where: is the RMS magnitude of the AC voltage.

)sin(2)(   tVtv

2
peakV

V 

RMS Magnitudes

v(t)

+

i(t)

RvR(t)

iR(t)

 time

)(tv

RMSV

By default, the magnitude of AC voltages (and currents) will be defined in terms of their RMS magnitudes.

For example, given:  V = 120 volts   V = VRMS  Vpeak = 170 volts.


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Similarly, the current waveform may also be 
expressed in terms of its RMS current magnitude: 

where: is the RMS magnitude of the AC current.
2

peakI
I 

)sin(2)(   tIti

RMS Magnitudes

v(t)

+

i(t)

RvR(t)

iR(t)

time

)(ti

RMSI



If the voltages are defined in terms of their RMS magnitudes, then the 
resultant currents will also be defined in terms of their RMS magnitudes.

If the voltages and currents are expressed in terms 
of their RMS magnitudes:

then the Real Power delivered to a resistor is:



This result is similar to the DC power formula:

)]2cos([)]([
)(

tIVIVAvgtpAvgP RR AC
 

IVP
ACR 

)(

VV
peak

 2 II
peak

 2

RMS Magnitudes & Resistor Power

v(t)

+

i(t)

RvR(t)

iR(t)

DCDCDC
IVPR 

)(

Note that this also provides the motivation for expressing 
AC waveforms in terms of their RMS (effective) magnitudes 

instead of their peak magnitudes. )sin(2)(

)sin(2)(









tIti

tVtv
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What if the AC source is supplying a load that is 
purely reactive…

I.e. – an ideal Capacitor or Inductor?

Similar to resistive loads, a sinusoidal (AC) voltage 
source will cause a sinusoidal (AC) current to flow 
through both capacitors and inductors.

But, their voltage and current waveforms do not 
follow the linear Ohm’s Law relationship.  Instead, 
their voltage and current waveforms are governed by 
a differential relationship. 

AC Sources and Reactive Loads
+

vC(t)

-

iC(t)

C

+

vL(t)

-

iL(t)

L

For an ideal capacitor, the voltage-current relationship 
is defined by the following equations:

Thus, given an AC source, we may obtain a solution for 
steady-state AC operation from these relationships.

+

vC(t)

-

iC(t)

C

o

t

C

t

CC

C
C

Vdtti
C

dtti
C

tv

dt

tdv
Cti






 0

)(
1

)(
1

)(

)(
)(

AC Sources and Capacitors
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If a sinusoidal voltage exists across a capacitor:

then the associated capacitor current will be:

which can be rewritten as:

)cos(2)(   tCVtiC

AC Sources and Capacitors

+
Cv(t)

i(t)

vC(t)

iC(t))sin(2)(   tVtvC

)90sin(2)(   tCVtiC

In order to allow for the direct comparison of the voltage and current waveforms, 
they must be expressed in terms of the same sinusoidal function (sine).
Thus, the current was rewritten in terms of sine by applying the identity:

)90θsin()θcos( 

Given the resultant capacitor voltage and current
waveforms:

It can be seen that:

• The voltage and current magnitudes do not
follow the linear Ohm’s Law relationship that 
holds true for resistors, and

• The capacitor current is phase-shifted by +90°
compared to the capacitor voltage.

)90sin(2)(   tCVtiC

AC Sources and Capacitors

)sin(2)(   tVtvC
+

Cv(t)

i(t)

vC(t)

iC(t)
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+

vL(t)

-

iL(t)

L

For an ideal inductor, the voltage-current relationship 
is defined by the following equations:

Thus, given an AC source, we may obtain a solution for 
steady-state AC operation from these relationships.

o

t

L

t

LL

L
L

Idttv
L

dttv
L

ti

dt

tdi
Ltv






 0

)(
1

)(
1

)(

)(
)(

AC Sources and Inductors

If a sinusoidal voltage exists across an inductor:

the associated inductor current will be:

which can be re-written as:

)cos(2)( 


 


t
L

V
tiL

)90sin(2)( 


 


t
L

V
tiL

)sin(2)(   tVtvL

AC Sources and Inductors

+
Lv(t)

i(t)

vL(t)

iL(t)
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)90sin(2)( 


 


t
L

V
tiL

)sin(2)(   tVtvL

Given the resultant inductor voltage and current 
waveforms:

It can be seen that:

• The voltage and current magnitudes do not 
follow the linear Ohm’s Law relationship that 
holds true for resistors, and

• The inductor current is phase-shifted by –90°
compared to the inductor voltage.

AC Sources and Inductors

+
Lv(t)

i(t)

vL(t)

iL(t)

The following set of equations define the general V-I relationships 
for resistors, capacitors, and inductors:

Although each these relationships may seem relatively simple on 
their own, when all three types of the circuit elements exist 
within the same circuit, analysis of the circuit’s operation can 
become quite complex.

Analysis of AC Sourced R-L-C Circuits





t

CC dtti
C

tv )(
1

)(
dt

tdi
Ltv L

L

)(
)( Rtitv RR  )()(
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FOR EXAMPLE: Given a simple, series-connected, R-L-C, AC circuit, 
a 2nd-order differential equation must be solved in 
order to determine the source current.

Analysis of AC Sourced R-L-C Circuits

)()()()( tvtvtvtv LCR 

dt

tdi
Ldtti

C
Rtitv

t )(
)(

1
)()(  



dt

tdv

L
ti

LCdt

tdi

L

R

dt

tid )(1
)(

1)()(
2

2

 v(t)

+

i(t)

R

vR(t)

C
L

vC(t) vL(t)

Note that, whenever a circuit containing resistors and inductors
and/or capacitors is supplied by a sinusoidal source:

the resulting current will also be sinusoidal in nature:

where the angle δ will fall within the range  – 90 ≤ δ ≤  + 90.
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FOR EXAMPLE: Given a simple, series-connected, R-L-C, AC circuit, 
a 2nd-order differential equation must be solved   
in order to determine the source current.

Note that, although solving the 2nd-order differential equation is 
manageable, this is for a simple series circuit.

But, what if this was a series-parallel circuit…?
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FOR EXAMPLE: Given a simple, series-connected, R-L-C, AC circuit, 
a 2nd-order differential equation must be solved   
in order to determine the source current.

But, provided that the source is sinusoidally time-varying, 
a Phasor Analysis can be performed on the circuit, the method  
of which allows for the V-I relationships for all three elements to 
be linearized into simple “Ohm’s Law” based relationships.
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