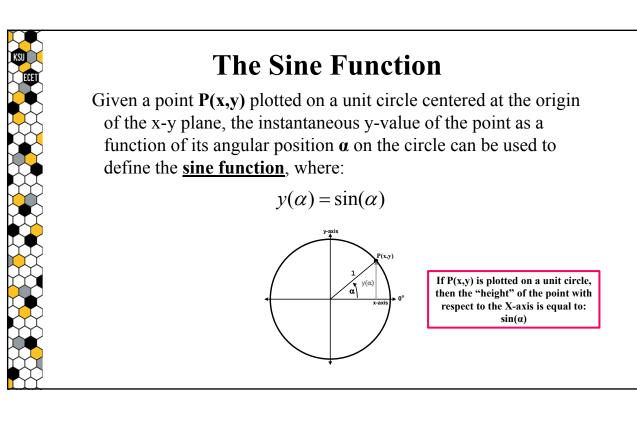
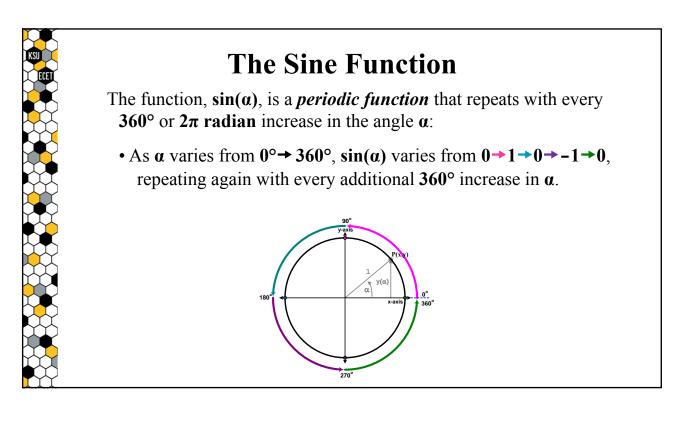
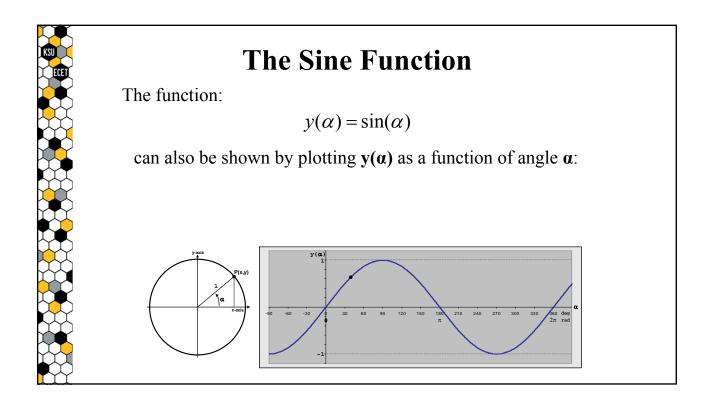
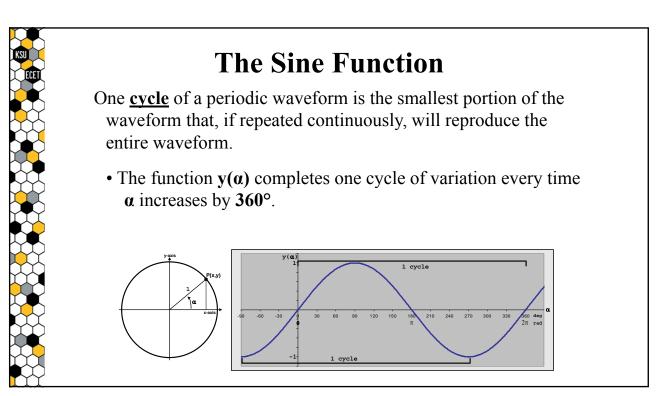
ECET 3000 Electrical Principles

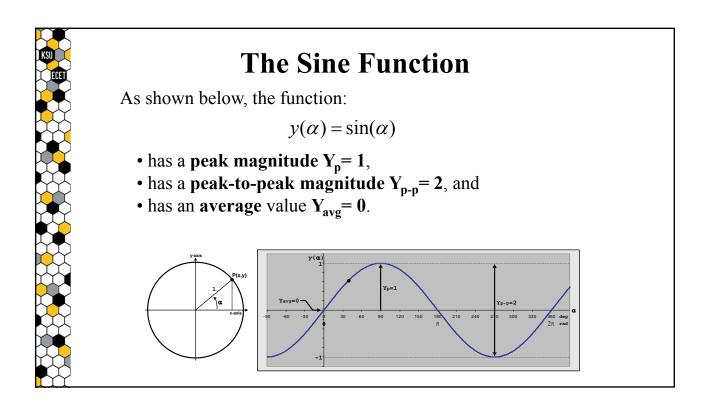
Sinusoidally-Varying Waveforms











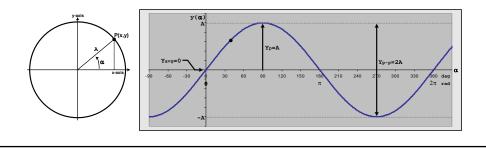
The Sine Function

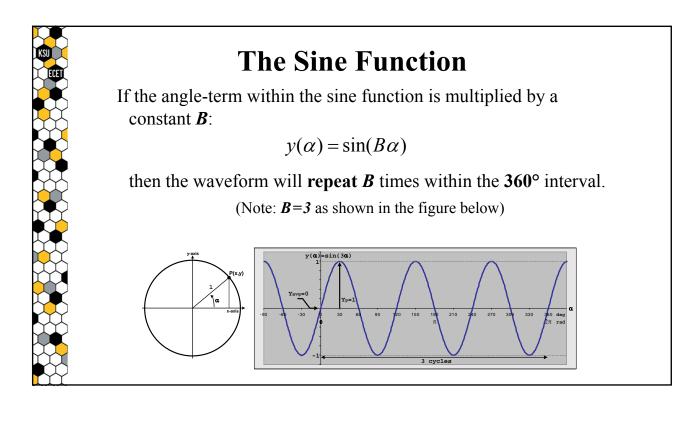
When the sine function is multiplied by a (real) constant *A*:

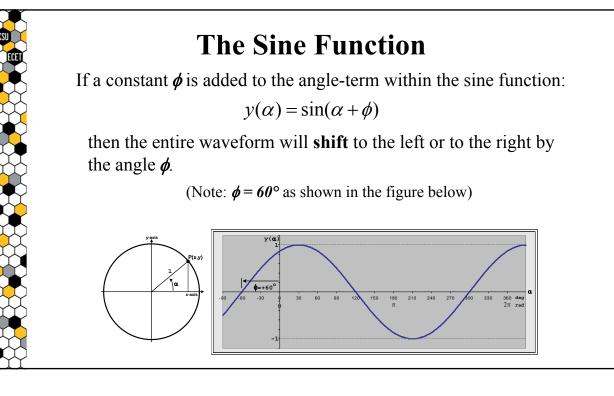
 $y(\alpha) = A\sin(\alpha)$

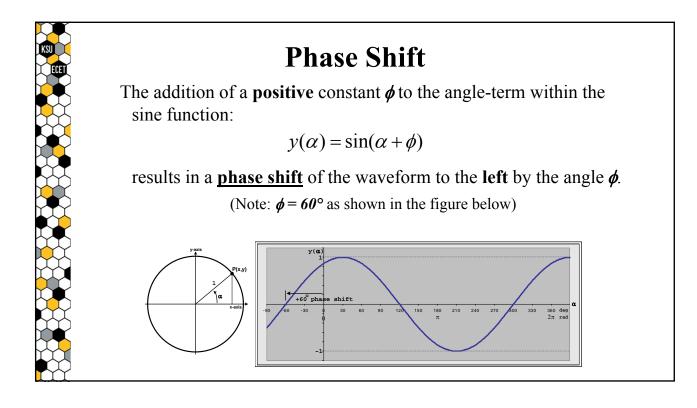
the **peak magnitude** and the **peak-to-peak magnitude** are both **multiplied** by *A*.

(The *average* value and the *repetition interval* both remain unchanged)









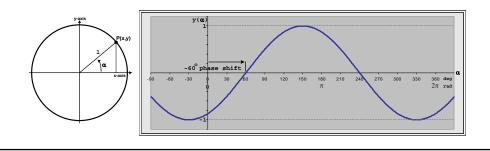
Phase Shift

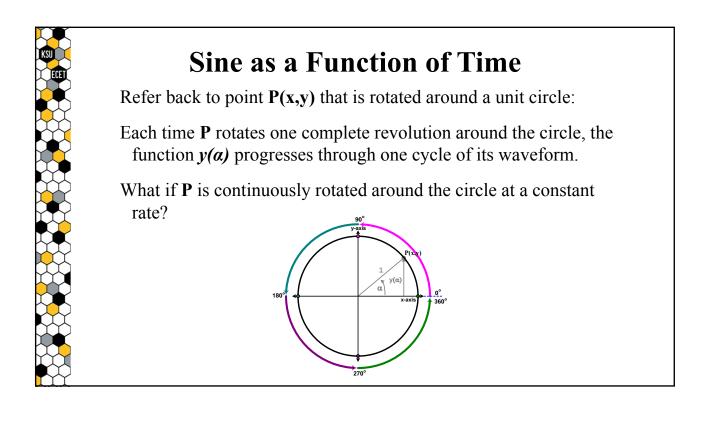
The addition of a **negative** constant ϕ to the angle-term within the sine function:

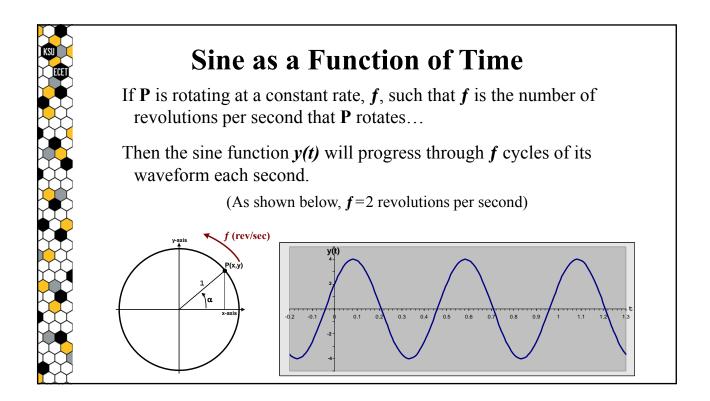
 $y(\alpha) = \sin(\alpha + \phi)$

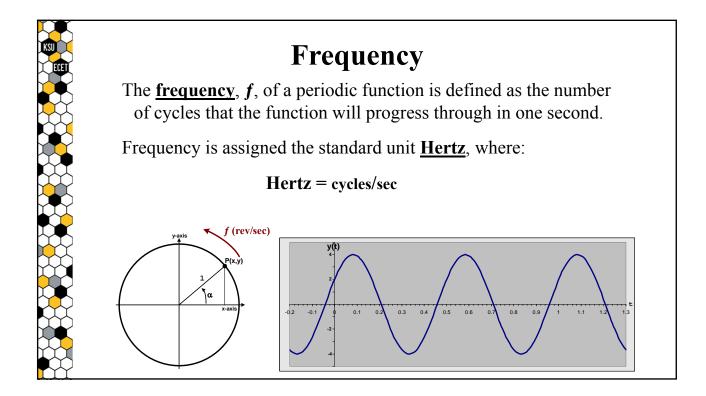
results in a **<u>phase shift</u>** of the waveform to the **right** by the angle ϕ .

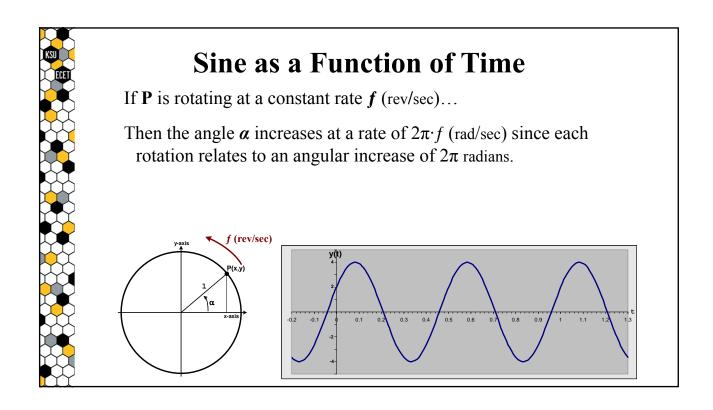
(Note: $\phi = -60^{\circ}$ as shown in the figure below)

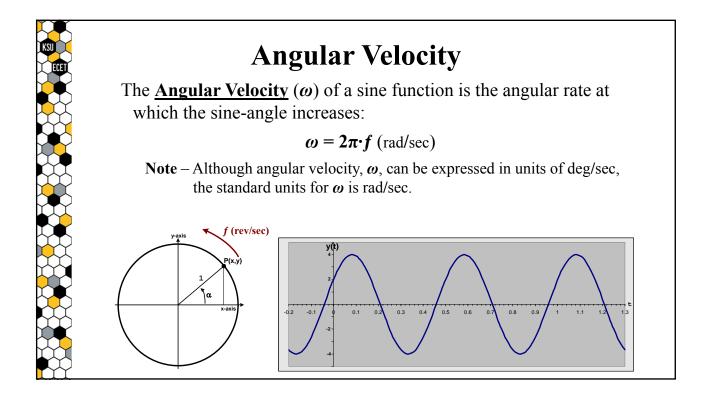


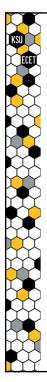












Sine as a Function of Time

If *Angular Velocity* (ω) defines the rate at which the angle of the sine function increases in radians/sec...

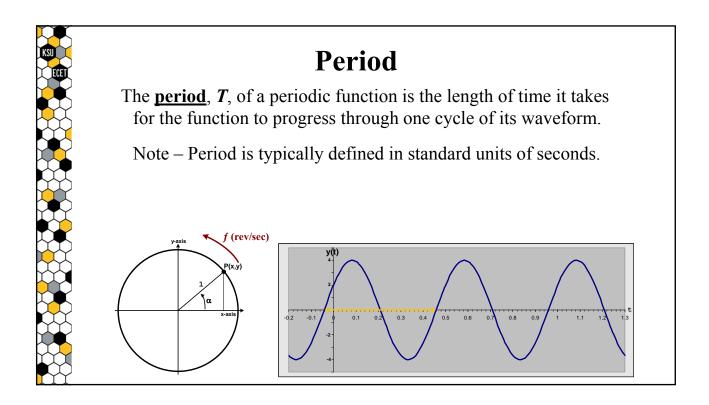
 $\omega = 2\pi \cdot f \text{ (rad/sec)}$

then $\omega \cdot t$ defines a *radian* angle if t is expressed in seconds.

And, since the term $\omega \cdot t$ defines an angle, it can be used in place of the angle α in the sine function provided:

 $\alpha = \omega \cdot t$ (radians)

Sine as a Function of Time Thus, we can express sine as a function of time, y(t), such that: $y(t) = \sin(\omega \cdot t)$ where: $\omega = 2\pi \cdot f$



Period

Since the function:

 $y(t) = \sin(\omega \cdot t)$

progresses through f cycles of its waveform each second, then the <u>**period**</u> of the function (i.e. – the amount of time required to complete each cycle) can be determined from frequency as:

$$T = \frac{1}{f} \left(\frac{1}{Hertz} \right) = \frac{1}{f} \left(\frac{1}{\frac{cycles}{sec}} \right) = \frac{1}{f} \left(\frac{\sec}{cycle} \right)$$

Period

Thus, given a sine function having frequency *f*:

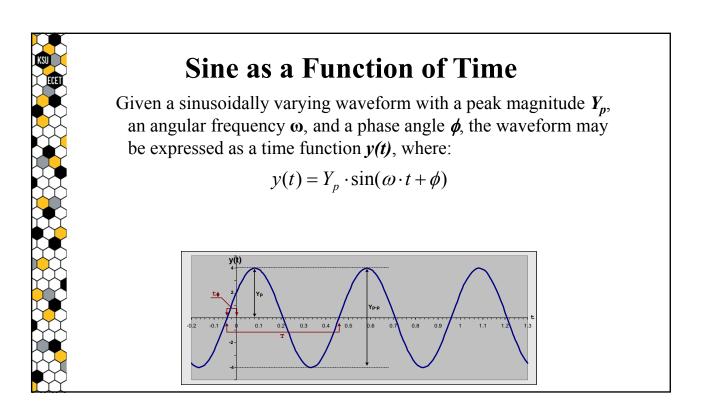
$$y(t) = \sin(\omega \cdot t)$$
 $\omega = 2\pi \cdot f$

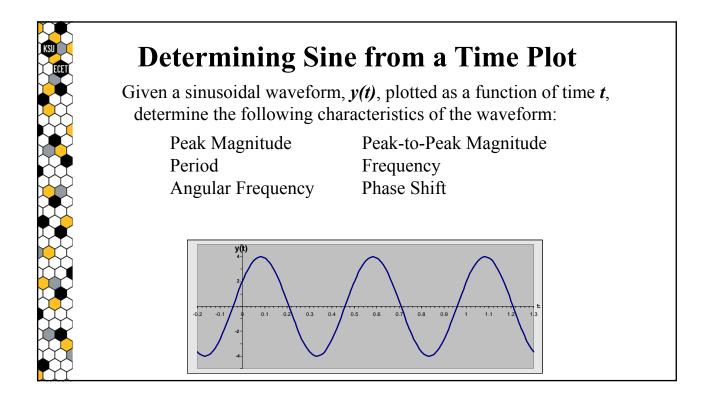
the **<u>period</u>** of the function can be determined by:

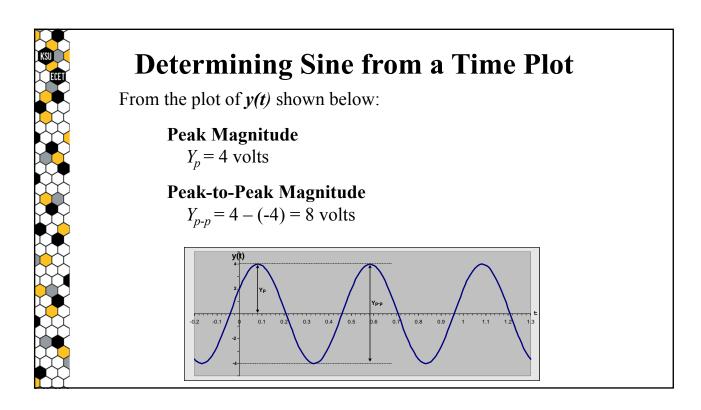
$$T = \frac{1}{f} = \frac{2\pi}{\omega} \left(\frac{\sec}{cycle} \right)$$

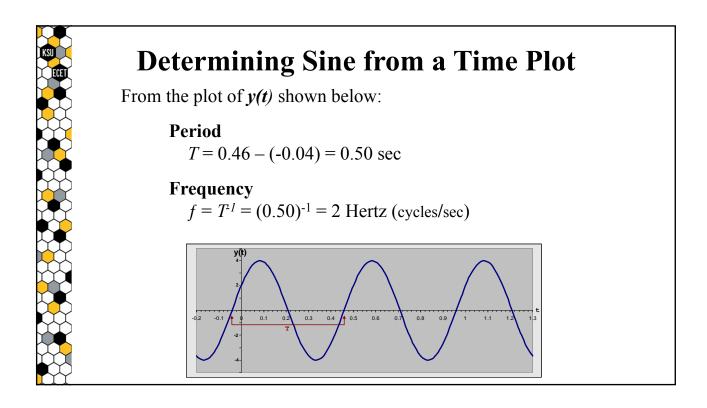
Or, given a periodic waveform having **period** *T*, the **frequency** *f* of the waveform can be determined by:

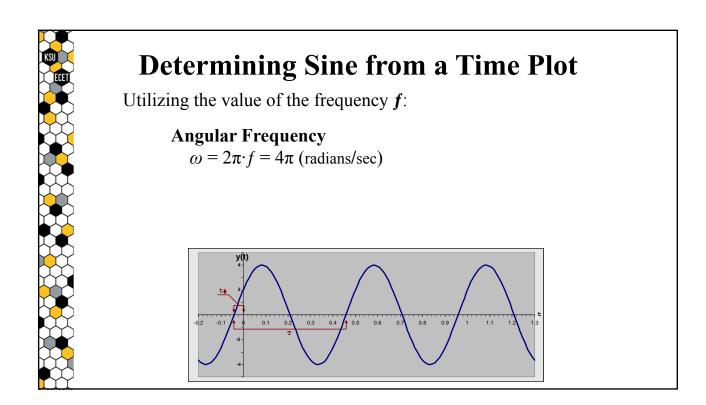
$$f = \frac{1}{T} \left(\frac{\sec}{cycle} \right)^{-1} = \frac{1}{T} \left(\frac{cycles}{\sec} \right) = \frac{1}{T} \left(Hertz \right)$$

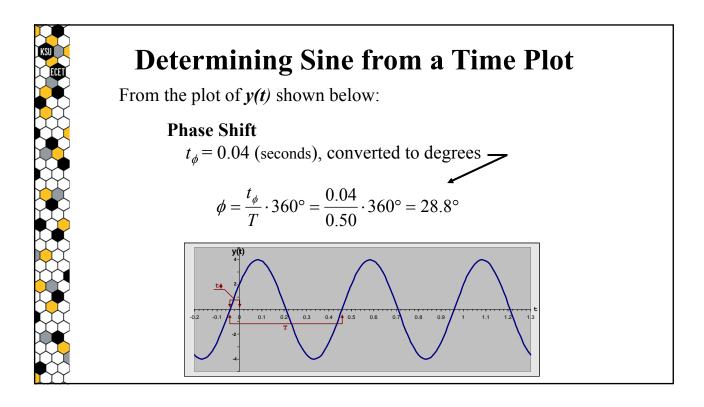












Determining Sine from a Time Plot

Thus, given the plot of the function *y(t)*, where:

$$y(t) = Y_p \cdot \sin(\omega \cdot t + \phi) \text{ volts}$$

the exact expression for y(t) is:

$$y(t) = 4 \cdot \sin(4\pi \cdot t + 28.8^\circ) \text{ volts}$$

