ECET 3000 Electrical Principles

Series-Parallel Circuits

Introduction

The fundamental circuit theory building blocks that we discussed during our analysis of simple circuits containing **either** seriesor parallel-connected elements include:

- Ohm's Law
- Series-connected & Parallel-connected Resistors
- Kirchhoff's Voltage & Current Laws (KVL & KCL)
- Series-equivalent & Parallel-equivalent Resistances
- Voltage Divider & Current Divider Equations

These same concepts will now be utilized during the analysis of circuits that contain combinations of **both** series- and parallel-connected elements.

a

The Reduce & Return Approach

Although **series-parallel circuits** may be analyzed by a variety of methods, one of the simplest methods is the:

Reduce and Return Approach.

With this method, the original circuit is **incrementally reduced** in complexity by replacing sets of either series- or parallelconnected elements with their series or parallel equivalents.

$$R_{EQ(series)} = R_1 + R_2 + \dots + R_N$$

$$R_{EQ(parallel)} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}\right)^{-1}$$

11

The Reduce & Return Approach

Each incremental reduction provides a simpler circuit containing fewer elements that, if necessary, can be further reduced until only a **trivial circuit** remains.

And once the original circuit is reduced down into a trivial circuit, that circuit can be analyzed in order to determine any unknown voltages or currents.

The voltages or currents from the trivial circuit can then be utilized, step-by-step in reverse order back through the simplified circuits, facilitating the analysis of each incrementally more complex circuit until the desired unknown parameters specified in the original circuit are known.

Step 3 – Analyze the Trivial Circuit (#3)

All that remains is a simple circuit (#3) consisting of two seriesconnected resistors.

We can now determine the unknown parameters \mathcal{I}_1 and $V_{2\parallel(3,4)}$, and then begin working backwards through the reduced circuits in order to find the original desired parameter V_4 .

