ECET 3000 Electrical Principles – Exam II

Sample Problems

Instructions: This exam is closed book except for one, 8½"x11" sheet of handwritten notes that may NOT contain any numerically-solved problems.

Problem #1) Given the following (steady-state) AC circuit:

Write out the Kirchhoff's Voltage Law (KVL) equation that could be used to solve the current \tilde{I} , expressing the voltages across the impedances based on the direction of the current \tilde{I} as shown, and use the equation to determine the phasor current \tilde{I} .

Problem #2) Given the following (steady-state) AC circuit:

$$v(t) = \sqrt{2} \cdot 24 \cdot \sin(\omega \cdot t + 45^\circ)$$
$$f = 60 \ Hz$$

Express all of the loads in their impedance form and then determine the impedance seen by the source if the entire network is simplified into a single complex impedance expressed in "rectangular" form.

$$Z_{eq} = \underline{\qquad} \Omega$$

Problem #3) Given the following circuit:

$$v(t) = \sqrt{2} \cdot 120 \cdot \sin(\omega \cdot t + 20^\circ)$$
 volts $f = 60$ Hz
 $R = 30$ Q

- a) Determine the *current* \tilde{I}_s in *phasor form*,
- **b)** Rewrite the *current* value as a *function of time* [i.e. $-i_s(t)$]
- c) Determine the *Real (average) power* consumed by the resistor.

Problem #4) Given the following (steady-state) AC circuit:

$$\widetilde{V}_s = 120 \angle 0^\circ$$
 volts

Determine the source current \widetilde{I}_s , the complex power produced by the source, S_{source} , and the complex power, S_2 , consumed only by the impedance Z_2 .

Problem #5) Given the following (steady-state) AC circuit:

Determine the *source current* \widetilde{I}_s and the capacitor voltage \widetilde{V}_c , both in RMS phasor form.

Problem #6) Perform a steady-state AC analysis of the circuit shown below in order to determine the source current, \tilde{I}_s , and the voltage across the inductor, \tilde{V}_L , both in RMS phasor form.

Problem #7) Given the following (steady-state) AC circuit:

Determine the *source current* \tilde{I}_s (expressed in "polar" form) and the *complex power* consumed by the 10 Ω impedance S_{10} (expressed in "rectangular" form).

$$\widetilde{I}_s =$$
 (A)
 $S_{10} =$

Problem #8) Given the following (steady-state) AC circuit:

a) Determine the source current \widetilde{I}_s and the inductor voltage \widetilde{V}_L , both in "polar" form.

b) Determine the *total complex power* supplied by the source to the circuit (in "rectangular" form).

Problem T/F) Specify whether each of the statements are TRUE or FALSE.

The *real power* consumed by an ideal capacitive load will always be zero.

- Given a circuit containing both an AC voltage source and a *resistor*, the magnitude of the *impedance* of the resistor will increase if the frequency of the source is increased.
 - Given a circuit containing both an AC voltage source and an *inductor*, the magnitude of the *impedance* of the inductor will increase if the frequency of the source is increased.
 - Given a circuit containing both an AC voltage source and an *capacitor*, the magnitude of the *impedance* of the capacitor will increase if the frequency of the source is increased.
 - A *purely resistive load* will consume no reactive power.
 - When connected to an AC voltage source, the *power supplied to a resistor* (as a function of time) varies at a frequency that is 2x greater than that of the applied source voltage.

Problem #9) Given the following (steady-state) AC circuit:

Determine the *source current* \widetilde{I}_s in phasor form and the *real power* consumed by the (30+j30) Ω impedance.

True/False-2) Specify whether each of the statements are TRUE or FALSE.

_____ A positive, purely "imaginary" impedance relates to a *capacitive load*.

Given an AC (purely sinusoidal) voltage source, the RMS voltage magnitude of the source is $\sqrt{2}$	2
times greater than the peak value of the source voltage.	

The magnitude of the *impedance* of a specific capacitor will be greater when it is connected to a 60Hz voltage source compared to when it is connected to a 50Hz voltage source.

The *impedance* of a resistor will increase as the source frequency increases.

- When expressed in *phasor form*, a sinusoidal voltage source's magnitude and phase angle are shown but the frequency of the source is not.
 - When connected to an AC voltage source, the *power* (rate of energy transfer) as a function of time to a resistor fluctuates at a frequency that is 2x the frequency of the applied source voltage.
 - The magnitude of the impedance of a capacitor supplied by an AC source will decrease as the source frequency increases.
 - Given an AC voltage source, the *RMS magnitude* of the source is $\sqrt{2}$ times greater than the peak value of the source voltage.
 - ____ The *reactive power* supplied by an AC source to a purely resistive load will always be zero.
 - The *real power* supplied to a $+j10\Omega$ inductive reactance will be equal to the real power supplied to a $-j10\Omega$ capacitive reactance if they are connected to the same AC voltage source.

	True	
	False	
	True	
	False	
T/F)	True	
8)	$\widetilde{I}_s = 1.455 \angle -59.04^\circ \text{ amps}, \widetilde{V}_L = 46.02 \angle 12.53^\circ \text{ volts}, S_{\text{source}} = 84.7 + j21.1$	
7)	$\widetilde{I}_s = 7.07 \angle -8.13^\circ amps$ $S_{10} = 180 + j0$	
	$I_s = 0.14 \angle 55.76^\circ amps$	
6)	$\widetilde{V}_L = 4.12 \angle 65.7^\circ \text{ volts}$ $\widetilde{L} = 0.14 \angle 52.76^\circ \text{ supp}$	
5)	$\widetilde{V}_C = 17 \angle 15.1^\circ \ volts$	
	$\widetilde{I}_s = 0.3 \angle 56.5^\circ amps$	
4)	$\widetilde{I}_{s} = 1.789 \angle +26.565^{\circ}$ A $S_{source} = 192 - j96$ $S_{2} = 128 - j96$	
3)	$\widetilde{I}_{S} = \underline{4 \angle +20^{\circ}}$ A $i_{S}(t) = \underline{\sqrt{2}(4)\sin(\omega t + 20^{\circ})}$ A $P_{R} = \underline{480}$ V	
2)	$Z_{eq} = \underline{59.7 \text{-} \text{j} 21.5} \Omega$	
1)	$120\angle 0^{\circ} - (30 + j40) \cdot \widetilde{I} - (0 - j20) \cdot \widetilde{I} - 60\angle -30^{\circ} = 0$	

9)
$$I_s = 7.07 \angle -8.13^\circ$$
 amps, $P_{(30+i30)} = 960$ watts

True/False-2) Specify whether each of the statements are TRUE or FALSE.

- **False** A positive, reactance value relates to a *capacitive load*.
- **False** Given an AC (purely sinusoidal) voltage source, the *RMS voltage magnitude* of the source is $\sqrt{2}$ times greater than the peak value of the source voltage.
- **False** The magnitude of the *impedance* of a specific capacitor will be greater when it is connected to a 60Hz voltage source compared to when it is connected to a 50Hz voltage source.
- **False** The *impedance* of a resistor will increase as the source frequency increases.
- True When expressed in *phasor form*, a sinusoidal voltage source's magnitude and phase angle are shown but the frequency of the source is not.
- True When connected to an AC voltage source, the *power* (rate of energy transfer) as a function of time to a resistor fluctuates at a frequency that is 2x the frequency of the applied source voltage.
- **True** The magnitude of the impedance of a capacitor supplied by an AC source will decrease as the source frequency increases.
- **False** Given an AC voltage source, the *RMS magnitude* of the source is $\sqrt{2}$ times greater than the peak value of the source voltage.
- **True** The *reactive power* supplied by an AC source to a purely resistive load will always be zero.

True The *real power* supplied to a +j10 Ω inductive reactance will be equal to the real power supplied to a -j10 Ω capacitive reactance if they are connected to the same AC voltage source.

Problem #10) Determine the *source current* and the *load current* in the following circuit that contains an ideal transformer with a turns ratio a = 5.

Problem #11) A balanced, positive-sequence, 3Φ source having phase voltage $\tilde{V}_a = 80 \angle 0^\circ$ volts is used

to supply a Y-connected load, each phase of which has the impedance $Z_Y = 8 - j6\Omega$. The *line current* flowing out of phase "**a**" of the source is $\tilde{I}_a = 8 \angle 36.9^\circ$ amps. Specify all of the *phase* and *line voltages* of the source along with all of the *line currents* flowing in the system.

Problem #12) Determine the *source voltage and current* in the following circuit that contains an ideal transformer with a turns ratio a = 0.25

Problem #13) Specify whether each of the statements are TRUE or FALSE.

 Under " <i>no-load</i> " conditions (i.e. – the secondary winding remains "open-circuited"), an ideal transformer will have no current in the primary winding.
 The rated current for the primary winding of a step-down transformer will be less than the rated current for the secondary winding.
 The magnitude of the currents in the primary and secondary coils of an "ideal" transformer will also have the same ratio as the magnitudes of the voltages across the primary and secondary coils.
 The effective turns ratio of a transformer is dependent on the winding to which the source is connected.
 The rated current for a transformer's winding is the maximum current that can flow continuously in that winding without damaging the transformer.
 _ The winding with the largest number of turns will be the high-voltage winding in a transformer.
 An ideal transformer will function with either an AC or a DC applied voltage.
 _ Although their magnitudes may differ, the phase angles of the primary and secondary voltages of an ideal transformer must be equal.
 The turns ratio of a transformer is often specified by the ratio of the rated primary voltage over the rated secondary voltage.
 If the primary coil of a transformer has fewer turns than the secondary coil, then the secondary side will be the high-voltage side of the transformer.
 Given a source connected to a transformer having an effective turns ratio a=10, the magnitude of the primary voltage will be 10x larger than the magnitude of the secondary voltage.
 A "step-up" transformer will have a turns ratio that is greater than one $(a > 1)$.
 _ The winding with the smaller number of turns will be the low-voltage winding in a transformer.
 The magnitudes of the phase voltages of a Y-connected, balanced, 3Φ source are $\sqrt{2}$ times larger than the magnitudes of the source's line voltages.
 Under "no-load" conditions (i.e. – the secondary winding remains "open-circuited"), an ideal

transformer will have no voltage across its secondary winding.

Problem #14) A balanced, positive-sequence, three-phase source has a line voltage $\tilde{V}_{bc} = 60 \angle 0^{\circ}$ volts; Specify all of the other *phase voltages* and *line voltages* of the source:

10)		$I_{Source} = 1.874 \angle -38.66^{\circ} amps$ $I_{Load} = 9.37 \angle -38.66^{\circ} amps$		
		$\widetilde{V}_a = 80 \angle 0^\circ \text{ volts}$ $\widetilde{V}_{ab} = 138.6 \angle 30^\circ \text{ volts}$		
		$\widetilde{V}_b = 80 \angle -120^\circ \text{ volts}$ $\widetilde{V}_{bc} = 138.6 \angle -90^\circ \text{ volts}$		
		$\widetilde{V}_c = 80 \angle -240^\circ \text{ volts}$ $\widetilde{V}_{ca} = 138.6 \angle -210^\circ \text{ volts}$		
11)		$\widetilde{I}_a = 8 \angle 36.9^\circ amps$		
		$\widetilde{I}_a = 8 \angle -83.1^\circ amps$		
		$\widetilde{I}_a = 8 \angle -203.1^\circ amps$		
12)		$\widetilde{V}_{Source} = 30 \angle 0^{\circ} \ volts$ $\widetilde{I}_{Source} = 33.94 \angle -45^{\circ} \ amps$		
13)	True	Under " <i>no-load</i> " conditions (i.e. – the secondary winding remains "open-circuited"), an ideal transformer		
-	True	will have no current in the primary winding. The rated current for the primary winding of a step-down transformer will be less than the rated current		
-	the secondary winding. False The magnitude of the currents in the primary and secondary coils of an "ideal" transformer w			
-	True	the same ratio as the voltages across the primary and secondary coils. <u>e</u> The effective turns ratio of a transformer is dependent on the winding to which the source is connected		
_	True	The rated current for a transformer's winding is the maximum current that can flow continuously in that		
_	True	winding without damaging the transformer. The coil with the largest number of turns will be the high-voltage coil in an ideal transformer.		
_	False	An "ideal transformer" will function with either an AC or a DC applied voltage.		
_	True	There is no phase angle change from primary to secondary voltage across an ideal transformer.		
_	True	_ The turns ratio of a transformer is often specified by the ratio of the rated primary voltage compared to the		
rated secondary voltage. <u>True</u> If the primary coil of a transformer has fewer turns than the secondar		rated secondary voltage. If the primary coil of a transformer has fewer turns than the secondary coil, then the secondary side will be		
_	True the high-voltage side of the transformer. Given a source connected to a transformer having an effective turns ratio a=10, the magnitude			
False A "step-up" transformer will have a turns ratio that is greater than one $(a > 1)$		primary voltage will be 10x larger than the magnitude of the secondary voltage. A "sten-up" transformer will have a turns ratio that is greater than one $(a > 1)$		
-	True	The winding with the smaller number of turns will be the low-voltage winding in a transformer		
-				
-	<u>False</u>	I ne magnitudes of the phase voltages of a Y-connected, balanced, 3Φ source are $\sqrt{2}$ times larger than the magnitudes of the source's line voltages.		
	False	_ Under " <i>no-load</i> " conditions (i.e. – the secondary winding remains "open-circuited"), an ideal transformer		

14)

<i>Ṽ_a</i> = 34.64∠+90° V	\widetilde{V}_{ab} = 60∠+120° V
<i>Ṽ_b</i> = 34.64∠–30° V	$\widetilde{V}_{bc} = 60 \angle 0^{\circ} \mathbf{V}$
<i>Ṽ_c</i> = 34.64∠−150° V	\widetilde{V}_{ca} = 60∠–120° V