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In the case of an AC source where:

the general expression for power produced by the 
source is:      
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If an AC source is connected to a resistive load, 
such that:

then the power consumed by the resistor will be:      
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The figure below shows the power waveform:

plotted along with the resistor’s voltage and 
current waveforms:
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Additionally, it can be seen that the power 
waveform varies periodically, but with a 
frequency that is 2x larger than that of the 
applied voltage or the resultant current.
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The peak magnitude of the AC power waveform is:

This should not be confused with the constant 
power provided to a resistor by a DC source.
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To better understand the resistor’s AC power 
waveform, it is useful to rewrite the power 
expression:

(by utilizing the trig-identity sin2x = ½·[1 – cos2x]):
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Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The first term is a constant that relates to the 
average value of the power that is consumed 
by the resistor.

)2cos(
22

)( t
IVIV

tp peakpeakpeakpeak

R 





 

AC Power and Resistors

)(tpR
average

v(t)

+

i(t)

RvR(t)

iR(t)

Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The second term is a sinusoidal term that 
varies at 2x the source frequency and provides 
the fluctuation in the power waveform.
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In AC systems, it is typically the average value of 
the power that is desired.

This average power value is called Real Power.

The real power consumed by a resistive load is:
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In terms of average power supplied to a resistor, 
an AC source is ½ as effective as a DC source
whose magnitude is equal to the peak value of 
the AC source.
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Since the average AC power is proportional to the 
square of the source’s peak voltage:

if the peak value of the AC voltage is increased 
such that it is       times larger than the DC voltage:

then the AC source will supply the same average 
power to the resistor as the DC source.
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Based on this result, an effective voltage can be 
defined for a sinusoidally-varying AC source, 
such that:

Note that the effective value of the AC source is 
equal to the RMS (root-mean-squared) value of 
the source voltage, as defined by the function:

2
peak

effective

V
V 

Effective / RMS Voltage Magnitudes

2
)(

1

0

2 peak
T

RMSeffective

V
dttv

T
VV  

v(t)

+

i(t)

RvR(t)

iR(t)



8

The voltage waveform may be expressed in terms 
of its RMS voltage magnitude: 

where: is the RMS magnitude of the AC voltage.
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Similarly, the current waveform may also be 
expressed in terms of its RMS current magnitude: 

where: is the RMS magnitude of the AC current.
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When the voltages and currents are expressed in 
terms of their RMS magnitudes:

the power delivered to a resistor is:

with an average (Real Power) value of:
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As previously stated, the general expression for the 
power produced by an AC source is:

where:      
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If the voltages & currents are expressed in terms of their 
RMS magnitudes, the power expression becomes:

which may be modified using several trigonometric 
identities into the following form:
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AC Power – General Case

The modified power expression is often simplified by 
defining a new variable, θ, where:

and substituting it into the equation, resulting in the 
general power expression:
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The angle θ, is defined by the difference between the 
phase angles of the voltage and current,

such that:

The angle θ is often referred to as the power angle:
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This general expression defines the instantaneous 
power produced by an AC source.

Likewise, if the source is connected across a load 
that may have resistive, capacitive, and/or 
inductive components, then the solution also 
defines the instantaneous power consumed by 
the AC supplied load.
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The resultant power waveform has two terms:

 the first of which is a constant that provides 
the average power supplied to the resistor, 
which is defined to be Real Power, PR , and

 the second of which is a purely sinusoidal
term that has a zero average value and varies 
at 2x the frequency of the source voltage.
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AC Power and Resistors

The resultant power waveform has only one term:

which is a purely sinusoidal term that has a   
zero average value and varies at twice (2x) the 
frequency of the source voltage.

Since the power waveform has a zero-average 
value, the inductor consumes zero real power:

but power is flowing into and out of the inductor.
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The resultant power waveform has only one term:

which is a purely sinusoidal term that has a    
zero average value and varies at twice (2x) the 
frequency of the source voltage.

Since the power waveform has a zero-average 
value, the capacitor consumes zero real power:

but power is flowing into and out of the capacitor.
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AC Power and Capacitors

Reactive Power (Q ) is defined as the magnitude 
of the power that is flowing into and out of a 
reactive load when supplied by an AC source.

Thus, given:

the reactive power for the inductive and 
capacitive loads can be defined as:
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Reactive Power is given the unit of “Vars”, 
which stands for:

“Volt-Amps-Reactive”.

Note that the reactive power for an inductor is positive
while the reactive power for a capacitor is negative.

Thus, it is often stated that an inductor “consumes” 
reactive power while a capacitor “produces” reactive 
power.

Reactive Power

+
Lv(t)

i(t)

vL(t)

iL(t)

+
Cv(t)

i(t)

vC(t)

iC(t)

VarsIVQ CCC     

VarsIVQ LLL    

The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The first term is a constant that provides the 
average or Real Power that is consumed by the 
resistive portion of the load:
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The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The second term is a sinusoidal term that varies 
at 2x the source frequency and provides the 
fluctuation in the power being supplied to the 
resistive portion of the load.
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The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The third term is also purely sinusoidal, the 
magnitude of which provides the Reactive Power
“consumed” by the reactive portion of the load.
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Note that, if the load has both a resistive and a 
capacitive or an inductive component, then the 
power angle θ will fall somewhere in the range:

-90°≤ θ ≤+90°

resulting in the existence of all three terms in 
the general power expression.

Thus, there will be Real and Reactive Powers 
flowing into the load, as defined by: 

+
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AC Power in Combination Circuits

The term Complex Power is used to characterize 
both the Real Power and the Reactive Power that
an AC source is producing or that a complex load 
impedance (with a resistive component and/or an 
inductive or capacitive reactive component) is 
consuming.

Complex Power (S) is a complex number and is 
defined by:

where: P is Real Power, and

Q is Reactive Power.
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Z
+

Complex Power (S):

may be solved directly from a circuit element’s 
phasor voltage and phasor current as:
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the real portion of which relates to Real Power and the 
imaginary portion of which relates to Reactive Power.

Complex Power
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Note that       is the complex conjugate of    , and  
is defined as:

The complex conjugate of a complex number 
expressed in polar form has the same magnitude 
as the original number but the angle is negated.
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Apparent Power (|S|) is defined to be the 
magnitude of complex power:

Note that apparent power is often specified as 
one of the “ratings” of a machine, such that:
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Power Factor (pf ) provides a measure of the portion 
of the apparent power that relates to real power:

Thus, power factor may be defined as:
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Note that power factor is often specified as having a leading or 
lagging characteristic, which is based on the angle relationship 
between the phasor voltage and the phasor current 
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A leading power factor exists when the current 
waveform is “leading” the voltage, which 
occurs with a capacitive load impedance and 
results in a negative angle difference for θ:

A lagging power factor exists when the current 
waveform is “lagging” the voltage, which 
occurs with a inductive load impedance and 
results in a positive angle difference for θ:
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Note that the angle θ for a purely resistive load 
has a zero value since the voltage and current 
waveforms are “in-phase”, resulting in a power 
factor that which is neither leading nor lagging.

This is referred to as a unity power factor since 
the value of power factor under this condition 
equals one.
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Complex Power (S):

Real Power (P):

Reactive Power (Q):

Apparent Power (|S|):

Power Factor (pf):
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Summary of Complex Power Equations
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Resonance is a condition that occurs within an R-L-C circuit 
when the reactive power “consumed” by the inductive 
elements is equal to the reactive power “produced” by the 
capacitive elements.

Note – if the reactive powers are equal, then the energy that 
the inductive elements are absorbing (or releasing) 
at any point in time will be equal to the energy that 
the capacitive elements are releasing (or absorbing) 
at that same instant.

The resonant frequency, fr , is the source frequency at which 
resonance occurs.

Resonance

i

fr

Imax

A Series-Resonant Circuit is an R-L-C circuit that contains a 
resistor, an inductor, and a capacitor that are connected  
in-series with each other.

In a series-resonant circuit, the current will be maximum 
when the source is operating at the resonant frequency.

Series-Resonant Circuits

+

CR L

e(t)
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fr

Z

R

Resonance occurs in a series-resonant circuit when XL = XC .

Thus, at resonance, the total series-impedance will be:

the magnitude of which will be at its minimum value, 
resulting in a current that is in-phase with the source 
voltage and at its maximum possible magnitude, Imax .
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The resonant frequency is the frequency at which XL equals XC.
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Since the total series-impedance at resonance is:

if                 , then the maximum current magnitude will be:
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Series-Resonance Peak Current
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The quality factor, Qs , of a series-resonant circuit is defined by:

Thus:
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Additionally, note that the magnitude of the inductor and 
capacitor voltages at the resonant frequency will be: 

Quality Factor
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The term Selectivity is used to characterize the range of 
frequencies for which currents will pass through or flow in 
a series-resonant circuit.

Since the current magnitude decays as frequency varies away 
from the resonant frequency, arbitrary cutoffs are chosen 
in order to define the circuit’s selectivity.  

Selectivity
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f1 f2

Bandwidth

The Bandwidth of a series-resonant circuit is the range of 
frequencies for which the real power delivered to the 
resistor is greater than or equal to one-half of the peak 
power value.

Bandwidth

+ ZR = R  ZL = jXL  ZC = -jXC 
E
~

I
~

VR
~

+ -

VL
~

+ -

VC
~

+ -

max2

1
PPR  Note that peak power occurs 

at resonant frequency when 
the current is at a maximum.

fr

Imax

I
~

f1 f2

Imax
0.707

Bandwidth

The Half-Power Cutoff Frequencies are the frequencies at 
which the real power delivered to the resistor is equal to 
one half of the peak power value.

Note that one-half peak power occurs whenever:

Half-Power Cutoff Frequencies

+ ZR = R  ZL = jXL  ZC = -jXC 
E
~

I
~

VR
~

+ -

VL
~

+ -

VC
~

+ -

Note that peak power occurs 
at resonant frequency when 
the current is at a maximum.

max
max 707.0
2

~
I

I
I 
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fr

Imax

I
~

f1 f2

Imax
0.707

Bandwidth

The lower and upper half-power cutoff frequencies, f1 and f2,  
can be calculated from:

Half-Power Cutoff Frequencies

+ ZR = R  ZL = jXL  ZC = -jXC 
E
~

I
~

VR
~

+ -

VL
~

+ -

VC
~

+ -

Hz
4

2

1

22

1
2

2 




















LCL

R

L

R
f


Hz

4

2

1

22

1
2

1























LCL

R

L

R
f



fr

Imax

I
~

f1 f2

Imax
0.707

Bandwidth

Note that the resonant frequency, fr, is directly related to the  
lower and upper half-power cutoff frequencies, f1 and f2:

Half-Power Cutoff Frequencies

+ ZR = R  ZL = jXL  ZC = -jXC 
E
~

I
~

VR
~

+ -

VL
~

+ -

VC
~

+ -

21 fffr 
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fr

Imax

I
~

f1 f2

Bandwidth

Bandwidth can be defined in terms of the cutoff frequencies as:

Additionally, bandwidth is equal to:

Bandwidth

+ ZR = R  ZL = jXL  ZC = -jXC 
E
~

I
~

VR
~

+ -

VL
~

+ -

VC
~

+ -

12 ffBW 

S

r

Q

f
BW 

Filters
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Decibel – a unit defined by a logarithmic expression that is 
commonly used to define the levels of a variety of 
parameters including voltage gain, field strength, 
energy, and sound pressure.

Logarithm – a quantity representing the power to which a fixed 
number (the base) must be raised to produce a 
given number.

Given:

Then:

Decibels & Logarithms

xBA 

Ax Blog

Commonly used logarithms include:

Notes:

Logarithms

xA 10Ax 10log

xeA Ax elog

AAe 10log303.2log 

AAe lnlog 
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 The Log of one (1) is always equal to zero (0).

 If (A>1) then the Log of A is positive.

 If (A<1) then the Log of A is negative.

Additional properties include:

Properties of Logarithms

01log01log01log10  ne

3.21.0log3.05.0log10  e

61.15log3.32000log10  e

baba nnn logloglog  ba
b

a
nnn logloglog  aba n

b
n loglog 

Power Gain

Bel (B) – a base unit defined as a logarithmic ratio of powers:

Decibel (dB) – a logarithmic ratio of powers that is commonly 
utilized in order to define the gain (increase) in 
power P2 compared to power P1.

Bels & Decibels

1

2
10log

P

P
B 

1

2
10log1010

P

P
BdB 
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 If P2 = P1, then the decibel gain is zero.

 If P2 > P1, then the decibel gain is positive.

 If P2 < P1, then the decibel gain is negative.

Properties of Decibels

dB00101log10
5

5
log10 1010 

mW

mW

dB66.0104log10
5

20
log10 1010 

mW

mW

dB20)2(1001.0log10
100

1
log10 1010 

mW

mW

 If P2 = 2n P1, then the decibel gain is n (+3dB).

 If P2 = ½n P1, then the decibel gain is n (–3dB).

 If P2 = 10n P1, then the decibel gain is n (+10dB).

 If P2 = 10-n P1, then the decibel gain is n (–10dB)

Properties of Decibels

 dB35dB15
1

32
log1012321 10

5
11 

mW

mW
mWmWPmWP

   dB33dB9
200

25
log1020025200 10

3

2
1

11 
W

W
WWPWP
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dBm – a specific value of power, relating to a power P2 (mW), but 
expressed in terms of the decibel gain of P2 compared to a 
reference power of 1mW.

For example – convert a power of +6dBm to a mW value:

dBm

mW1
log10 2

10

P
dBm 

mW1
log106 2

10

P
dBm 

mW44mW110mW1 10

6

2 


P

Voltage Gain (AV) – a ratio of voltages that is commonly utilized 
in order to define the gain (increase) in 
voltage VOut compared to voltage VIn.

For example – is an amplifier has a voltage gain AV = 8, then:

Voltage Gain

In

Out
V V

V
A 

VIn VOutAV1 = 8 InInVOut VVAV  8
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dBv – a logarithmic ratio of voltages, expressed in terms of 
decibels, that is commonly utilized in order to define the 
gain in the power supplied to a resistive load R by 
voltage V2 compared to the power supplied to the same 
resistive load R by voltage V1.

dBv

1

2
10

2

1

2
102

1

2
2

1010
1

2
10 log20log10log10log10log10 2

1

2
2

V

V

V

V

V

V

P

P
dB

R
V

R
V











1

2
10log20

V

V
dBV 

There are four primary categories of filters:

Low-Pass Filters

High-Pass Filters

Band-Pass Filters

Stop-Band Filters

Filters
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The following combination of elements can be utilized to create a 
R-C Low-Pass Filter:

R-C Low-Pass Filter

C

C
inout jXR

jX
VV






C

C

in

out
V jXR

jX

V

V
A






The following plots show the voltage gain and phase response 
of the low-pass filter:

R-C Low-Pass Filter

CR
fc 


2

1
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The following combination of elements can be utilized to create a 
R-C High-Pass Filter:

R-C High-Pass Filter

C
inout jXR

R
VV




Cin

out
V jXR

R

V

V
A




The following plots show the voltage gain and phase response 
of the high-pass filter:

R-C High-Pass Filter

CR
fc 


2

1
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The following combination of elements can be utilized to create a 
series-resonant Band-Pass Filter:

Band-Pass Filter

CLL
inout jXjXRR

R
VV




CLLin

out
V jXjXRR

R

V

V
A




CL
fs 


2

1

Bode Plots are the curves obtained for the magnitude and phase 
response (versus frequency) of a system.

Idealized Bode Plots utilize straight-line segments to efficiently 
estimate the frequency response of a system.

There is a quick technique for sketching the frequency response 
of a system on a decibel scale that provides a good method for 
comparing the expected decibel levels at different frequencies.

Bode Plots
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Lets look back at the R-C High-Pass Filter.

The formula for the voltage gain 
can be rewritten as:

R-C High-Pass Filter

f

f
j

CRf
j

jXR

R

V

V
A

c

Cin

out
V












1

1

2
1

1

1


CR

fc 


2
1

Given the voltage gain for a R-C High-Pass Filter:

the magnitude of the voltage gain can be expressed as: 

R-C High-Pass Filter

f
f

jV

V
A

cin

out
V




1

1

2
1

22

1

1

1

1






































f
f

f

f
A

cc

V
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If voltage gain is expressed in decibels, then:

and when f << fc ,

thus:

R-C High-Pass Filter
























2

10 1log10
f

f
A c

dBV

22

1 


















f

f

f

f cc






























c

cc

ffdBV f

f

f

f

f

f
A

c
1010

2

10)(
log20log20log10

Note that, given the decibel voltage gain function ( f << fc ):

For every decrease in the frequency by a factor of 0.5 (one octave), 
there will be a 6dB decrease in the gain, and

For every decrease in the frequency by a factor of 0.1 (one decade), 
there will be a 20dB decrease in the gain.

Thus, an Idealized Bode Plot can be drawn for the gain function 
because the dB change per octave or decade is constant.

Bode Plots and High-Pass Filters












c

ffdBV f

f
A

c
10)(

log20
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The Bode Plot for the decibel voltage gain function is:

Bode Plots and High-Pass Filters












c

ffdBV f

f
A

c
10)(

log20

Additionally, the phase response may be drawn as:

Bode Plots and High-Pass Filters









 

f

fc1tan
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Bode-Plots and Low-Pass Filters
Given an R-C Low-Pass Filter, the decibel voltage gain ( f >> fc ) 

can be written as:

resulting in the following Bode Plot:

(assuming fc = 1kHz)












c

ffdBV f

f
A

c
10)(

log20

f
f

jV

V
A

cin

out
V




1

1

CR
fc 


2

1

Sketching Bode Plots
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Three-Phase Systems

A three-phase (3Φ) AC voltage source is a composite source that 
can be modeled using three single-phase AC voltage sources 
that are connected together to function as one complete unit.

Note that the three single-phase AC voltage sources must be connected 
together in a symmetrical fashion.

va
~

+ +

vb
~

+

vc
~

Three-Phase AC Voltage Sources
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++

+

va
~

vb
~

vc
~

a

c

b

n

The three sources are typically connected 
together in a “Wye” (Y) format such that the 
reference terminals of the three supplies are 
tied to a common point of connection.

The common point of connection is referred to 
as the “neutral point”.  

(node n in the figure)

Note that the neutral point is often grounded in order 
to provide a zero-volt reference for the source.

Wye-connected Three-Phase Source

The voltages      ,      , and      are referred to as 
“phase voltages” because they correspond to 
the voltage across each individual phase of the 
wye-connected source.

The phase voltages are sometimes referred to as 
“line-to-neutral voltages”, and as such may be 
expressed as      ,      , and     .

bV
~

aV
~

cV
~

anV
~

bnV
~

cnV
~

Phase Voltages

++

+

va
~

vb
~

vc
~

a

c

b

n
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++

+

va
~

vb
~

vc
~

Ib
~

Ia
~

Ic
~

Similarly, the currents     ,      , and      are 
referred to as “phase currents” because they 
correspond to the current flowing through 
each individual phase of the wye-connected 
source.

bI
~

Phase Currents

aI
~

cI
~

a

+

+

+

va~

vb~

vc~

va~
vb~

vc~

n b

c

n

L1

L2

L3

N

A “balanced” 3Φ source is a source whose 
phase voltages have equal magnitudes and 
phase angles that are separated by 120º.

Note that, despite slight magnitude differences 
that might exist between the three individual 
phases, most practical 3Φ sources are 
assumed to be balanced.

Balanced Three-Phase Voltage Source
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a

+

+

+

va~
vb~

vc~

n b

c

n

L1

L2

L3

N

vab~

vbc~

vca~

A second set of voltages can also be defined 
for the 3Φ source in terms of the voltage rise 
between each pair of terminals:

a-b, b-c, and c-a.

The voltages      ,      and      are referred to as 
“line voltages” because they are the voltages 
between any pair of line terminals.

abV
~

bcV
~

caV
~

Line Voltages

The line voltages for a balanced 3Φ source are 
closely related to the source’s phase voltages. 

The same logic can be used to express all three 
line voltages in terms of their respective 
phase voltages:

acca

cbbc

baab

VVV

VVV

VVV

~~~

~~~

~~~







Line Voltages
a

n

c

b

+

+

+

va~
vb~

vc~

vab~
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a

+

+

+

va~
vb~

vc~

n b

c

n

L1

L2

L3

N

vab~

vbc~

vca~

a

+

+

+

va~

vb~

vc~

va~
vb~

vc~

n b

c

n

L1

L2

L3

N

A complete analysis of a 3Φ source having the 
phase voltages: 

will result in the following set of line voltages:







240
~

120
~

~







VV

VV

VV

c

b

a







2103
~

903
~

303
~







VV

VV

VV

ca

bc

ab

Line Voltages

Note that the line voltages have equal magnitudes
and a 120º phase separation between each pair;

Thus, the line voltages maintain the same 
balanced relationship as the phase voltages:

Phase Voltages Line Voltages







240
~

120
~

~







VV

VV

VV

c

b

a







2103
~

903
~

303
~







VV

VV

VV

ca

bc

ab

Line Voltages

a

n

c

b

+

+

+

va~
vb~

vc~ vbc~

vca~

vab~

a

n

c

b

+

+

+

va~

vb~

vc~

va~
vb~

vc~
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A comparison of the phase and line voltages:

reveals that the line voltages are:

• greater in magnitude, and

•  30°greater in phase angle

compared to the phase voltages.

 303
~

     
~  VVVV aba

x3

Phase ↔ Line Voltage Relationship

a

n

c

b

+

+

+

va~
vb~

vc~ vbc~

vca~

vab~

a

n

c

b

+

+

+

va~

vb~

vc~

va~
vb~

vc~

cca

bbc

aab

VV

VV

VV

~
)303(

~

~
)303(

~

~
)303(

~







A wye-connected, three-phase load is 
constructed by connecting one end of the 
three individual loads to form a common 
(neutral) node.

The opposite end of the three individual 
loads provide the terminals for connection 
to a 3Φ system.

These terminals are often defined as load 
terminals T1, T2, and T3.

ZY

ZYZY

Wye-connected Three-Phase Loads

T3

T2 T1
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Three wires or “lines” are used to connect the source terminals to 
the terminals of the Y-connected load.

A “neutral wire” can be added to connect the grounded neutral-
point of the source to the center-point of the load, holding both 
neutral points at a zero-volt potential.

ZY

++

+

ZY

ZY

va
~ vb

~

vc
~

Wye-connected Loads in 3Φ Systems

Note that the voltage potential present on each line (w.r.t. the 
neutral wire) is equal to the phase voltage of the source’s phase 
to which the line is connected.

Thus, the four-wire connection results in the presence of a phase 
voltage across each phase of the load.

ZY

++

+

ZY

ZY

va
~ vb

~

vc
~

va
~

vb
~

va
~vb

~

vc
~vc

~

Wye-connected Loads in 3Φ Systems
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A set of line currents (     ,     and     ) can be defined that flow 
from each phase of the source, down the lines and into the 
individual phases of the load.

A neutral current (    ) can also be defined that flows in the 
neutral wire from the load back to the source.

ZY

++

+

ZY

ZY

va
~ vb

~

vc
~

Ia
~

Ib
~

Ic
~

In
~ In

~
In
~

nI
~

Wye-connected Load Currents

aI
~

bI
~

cI
~

Since the phase voltages of the load and source are equal, the 
line currents can each be solved independently by applying 
Ohm’s Law at each load.

ZY

++

+

ZY

ZY

va
~ vb

~

Ia
~

Ib
~

Ic
~

In
~ va

~vb
~

vc
~

Ia
~Ib

~

Ic
~

vc
~

Y

a
a Z

V
I

~
~ 

Y

b
b Z

V
I

~
~ 

Y

c
c Z

V
I

~
~ 

Wye-connected Load Currents
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Furthermore, if the source voltages are balanced and the load 
impedances are all equal, then the line currents will also be 
balanced.

ZY

++

+

ZY

ZY

va
~ vb

~

Ia
~

Ib
~

Ic
~

In
~ va

~vb
~

vc
~

Ia
~Ib

~

Ic
~

vc
~

 IIa

~  120
~ IIb  240

~ IIc

Wye-connected Load Currents

The total complex power produced or consumed by a 3Φ source 
or load is equal to the sum of the complex powers produced or 
consumed by each of the source’s or load’s three individual 
phases.

ZY

++

+

ZY

ZY

va
~ vb

~

Ia
~

Ib
~

Ic
~

In
~ va

~vb
~

vc
~

Ia
~Ib

~

Ic
~

vc
~

cba SSSS 3

Complex Power in 3Φ Systems
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In the case of a 3Φ, Y-connected load, the complex powers
consumed by each of the load’s three individual phases are:

*** ~~~~~~
cccbbbaaa IVS        IVS        IVS 

ZY ZY

ZY

va
~vb

~

vc
~

Ia
~Ib

~

Ic
~

Complex Power in Y-connected Loads

Thus, the total complex power consumed by a balanced, 3Φ, 
Y-connected load will be equal to 3x the power consumed 
by any individual phase:

allowing the total complex power to be
expressed in terms of a single phase:

where:

  13 3 SSSSS cba

  IVIVS aa 3
~~

3 *
3

 IIa

~

VVa

~

Complex Power in Y-connected Loads

ZY ZY

ZY

va
~vb

~

vc
~

Ia
~Ib

~

Ic
~
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In a balanced system, the neutral current will be:

If the line currents are balanced, then they will sum to zero 
 no current will flow in the neutral wire.
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AC-Supplied Coil

If a coil is supplied by an AC-source, eP(t), then a time-varying 
magnetic flux, P, will be created, as defined by:

(Faraday’s Law)

the field lines of which will pass through the center of the 
coil and then back around the outside in order to form 
closed-loops.

dt

tdΦ
Nte P

PP

)(
)( 

P)(teP PN

 turnsofnumber PN

P

Self-Inductance

Self-inductance, LP , can be defined as:

such that LP is proportional to the rate of change in the flux 
created by the coil over the rate of change in the current 
flowing through the coil.

)(teP PN

 turnsofnumber PN

)(tiP
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P
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P M

Mutually-Linked Coils

If a second coil is placed such that some of the flux passes 
through the coil, then a voltage will be induced across the 
second coil, also defined by:

(Faraday’s Law)

where: M is the flux that passes through the second coil.

dt

tdΦ
Nte M

SS

)(
)( 

)(teP PN

 turnsofnumber PN

)(teSSN

 turnsofnumber SN

 SM

Self-Inductance

Note that, if an AC source is connected to the second coil, a 
self-inductance, LS , can also be defined for that coil:

(Henries)

such that LS is proportional to the rate of change in the   
flux created by that coil over the rate of change that coil’s 
current.
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)(

)(

tdi
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S
SS 

)(tiS
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P M

Coupling Factor

A coupling-factor, k , can be defined as:

such that k is the ratio of the flux created by the first coil 
that passes through the second coil over the total flux 
created by the first coil.

)(teP PN

 turnsofnumber PN

)(teSSN

 turnsofnumber SN

)(

)(

tΦ

tΦ
k

P

M

P M

Mutual Inductance

Furthermore, a mutual inductance, M , can be defined as:

(Henries)

such that M is proportional to the rate of change in the flux 
that passes through the second coil over the rate of change 
in the current flowing through the first coil.
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P M

Mutual Inductance

Furthermore, a mutual inductance, M , can be defined as:

(Henries)

such that M is proportional to the rate of change in the flux 
that passes through the second coil over the rate of change 
in the current flowing through the first coil.

)(teP PN

 turnsofnumber PN

)(teSSN

 turnsofnumber SN

)(

)(

tdi

tdΦ
NM

P

M
S 

P M

Mutual Inductance

It also turns out that the mutual inductance, M , can be 
expressed in terms of the self-inductances of the coils as:

(Henries)

)(teP PN

 turnsofnumber PN

)(teSSN

 turnsofnumber SN

SP LLkM 
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P M

Mutually-Linked Coils

Note that the voltage, eS(t), induced across the second coil by 
the mutually-linked flux created by the first coil can be 
expressed in terms of the mutual inductance as follows:

(volts)

)(teP PN

 turnsofnumber PN

)(teSSN

 turnsofnumber SN

dt

tdi
Mte P

S

)(
)( 

P M

Iron-Core Transformers

An “ideal” iron-core transformer consists of two coils that are 
mutually-linked by an iron core that provides an “ideal” 
closed-loop path for the flux created by the first coil.

If all of the flux stays within the iron core, then all of the flux 
created by the first coil will pass through the second coil:

)(teP PN

 turnsofnumber PN

)(teS

 turnsofnumber SN

)(tiS

)()()( tΦtΦtΦ SPM 
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If the magnetic core is assumed to be ideal, then the total flux 
created by the sourced coil will pass through the second coil.

Since a time-varying flux passes through the second coil, a 
voltage will be induced across that coil, also defined by:

dt

td
NE M

ss

)(~ 


E~p E~s

Ideal Transformer

V~source
Np Ns

M(t)

Mutually Linked Coils

Mutually Linked Coils

I~p

E~p E~s

Ideal Transformer

V~source
Np Ns

M(t)

If the total flux passes through both coils, then the rate of 
change,        , of the flux through the coils must be the same.

The following relationship may be derived by solving for          
in both coils and equating the results:
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The relationship between the two coil voltages is typically 
expressed as a ratio of the voltages, which equals to the 
ratio of their respective number of turns.

(I.e. – the “turns ratio” of the transformer).
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Ideal Transformer

V~source
Np Ns

M(t)

Voltage Relationship

The ratio relationship, referred to as the turns ratio (a):

defines the basic operation of an ideal transformer in terms 
of the primary and secondary voltages.
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Determining the Polarity Relationship

If a load is connected to the second winding, then a current 
will flow out of the secondary winding and through the load 
due to the induced voltage.

Zload

I~p

E~p E~s

Ideal Transformer

I~s

V~source
Np Ns

M(t)

Secondary Current Effects

But, the existence of a counter-flux produced by the current 
that is flowing in the second coil would tend to decrease the 
overall flux within the magnetic core, in-turn decreasing the 
total flux passing through the primary coil. 

ZloadE~p E~s

Ideal Transformer
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V~source
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M(t)
 S(t)

SMNet 
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Assuming that the source is ideal, this presents a problem 
because Faraday’s Law does not allow for a change in the 
flux passing through the primary coil unless the supply 
voltage changes accordingly.

ZloadE~p E~s

Ideal Transformer

I~s

V~source
Np Ns

M(t)
 S(t)

dt

td
NE Net

PP

)(~ 


Secondary Current Effects

Thus, the existence of the secondary current’s counter-flux 
requires that a additional (primary) current be drawn into 
the primary winding.

The primary current will, in-turn, create an additional flux 
component, p, within the core that is equal in magnitude 
but opposite in direction compared to the secondary flux s. 
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Secondary Current Effects
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Primary Current

Since the primary and secondary fluxes are equal in magnitude 
but opposite in direction, they will cancel, leaving the net 
flux in the core the same as defined by Faraday’s Law 
applied to the primary winding: 
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M(t)
 S(t) P(t)

MPSMNet 

Primary/Secondary Current Ratio

Based on the MMF relationship applied to both coils:

the ratio of the primary and secondary currents must be:

in order for their fluxes to cancel.
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Overall Operation of Ideal Transformer

Thus, the overall operation of the ideal transformer that 
supplies a single load can be defined by the following set of 
equations:
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The following equivalent circuit will be used to represent an 
ideal transformer:
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Ideal Transformer Equivalent Circuit
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Primary Winding ≡ the winding that creates the mutually-linked 
flux (I.e. – the sourced winding).

Secondary Winding ≡ the winding across which a voltage is 
induced (I.e. – the load winding).

Note – the primary & secondary winding designations can also be defined in terms 
of the power flow direction (I.e. – the source & load connections)

Ideal Transformer Definitions

E~p E~s

Ideal Transformer

V~source
Np Ns

(t)

High-Voltage Winding ≡ the winding with the larger voltage magnitude.
(I.e. – the coil with the larger number of turns)

Low-Voltage Winding ≡ the winding with the smaller voltage magnitude.
(I.e. – the coil with the smaller number of turns)

Note – the high-voltage winding will have the larger number of turns while the 
low-voltage winding will have the smaller number of turns.

Ideal Transformer Definitions
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Ideal Transformer Definitions
Step-Up Transformer ≡ a transformer whose voltage increases 

from primary to secondary winding.

Step-Down Transformer ≡ a transformer whose voltage decreases 
from primary to secondary winding.

Notes: A step-up transformer’s turns ratio will be less than one (a<1).

A step-down transformer’s turns ratio will be greater than one (a>1).
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Input Impedance

Thus, the input impedance of an ideal transformer is equal to its 
turns-ratio squared times the impedance of its connected load:
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