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Power from an AC Source

In the case of an AC source where:
i |
V() =V, -SIN(@ -1+ P) +
"6
() =1, -SIN(@ 1+ 0)

the general expression for power produced by the
source is:

p(t)=v(1)-i(t)

= I/l’m’( .]peak Sln(a)t+ ¢) 'Sln(a)t+5)
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AC Power and Resistors

If an AC source is connected to a resistive load,
such that:
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Ve(O) =V o -SIN(@ - 1+ P)

ed

ip(t) =1,y -SIN(@-1 + @)

%

k
I _ _ pea
eak
P R

then the power consumed by the resistor will be:

Pr(®) = vp()-i,(1)
=V -1 -sin’(o-1t+9)




AC Power and Resistors

The figure below shows the power waveform:
pr)=V,, 1, sin* (ot +¢)

plotted along with the resistor’s voltage and
current waveforms:
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AC Power and Resistors

Additionally, it can be seen that the power
waveform varies periodically, but with a
frequency that is 2x larger than that of the
applied voltage or the resultant current.
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AC Power and Resistors

The peak magnitude of the AC power waveform is:

P =V I
peak peak

peak

This should not be confused with the constant
power provided to a resistor by a DC source.

AC Power and Resistors

To better understand the resistor’s AC power
waveform, it is useful to rewrite the power
expression:

by utilizing the trig-identity sin’x = %[ — cos2x]):
y g g

pR (t) = vaeak ) [peak ' Sin2 (a) : t + ¢)

v I .
= —”””2 = -[1-cos(2-@-1)]

_ | Vet et pwkz']ﬂ““k -cos(2-w-t)




AC Power and Resistors

Looking at the resultant AC power waveform:

V; ak .I k V)eak -I eak
pR(t) =|-F- 5 |- - 5 ==-cos(2-w-t)

It can be seen that the waveform has two terms:

* The first term is a constant that relates to the
average value of the power that is consumed
by the resistor.

AC Power and Resistors

Looking at the resultant AC power waveform:

) vV V
(L) 1 1

£ = peak peak peak peak CcoS 2 -t
o Pa() 2 2 G

It can be seen that the waveform has two terms:

* The second term is a sinusoidal term that
varies at 2x the source frequency and provides
the fluctuation in the power waveform.
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Real Power

In AC systems, it is typically the average value of
the power that is desired.

This average power value is called Real Power.

The real power consumed by a resistive load is:

Vpeak ) Ipeak
PR(AC) = Avg[pR (t)] = T (Watts)

AC vs. DC Power to Resistors

In terms of average power supplied to a resistor,
an AC source is Y as effective as a DC source
whose magnitude is equal to the peak value of
the AC source.

PR(AC) = ek pedt (Watts)
If: V.=V
PR(DC) = VDC IDc (Watts)




Effective Voltage

Since the average AC power is proportional to the
square of the source’s peak voltage:

2
P _ Vpeak ’ I peak Vpeak ’ Vpeak _ Vpeak

fuo g 2R 2-R

if the peak value of the AC voltage is increased
such that it is+/2 times larger than the DC voltage:

+ f

I/peak = \/E ) VDC .::' ‘

then the AC source will supply the same average V| 7]
power to the resistor as the DC source. "

Effective/ RMS Voltage Magnitudes

Based on this result, an effective voltage can be
defined for a sinusoidally-varying AC source,
such that:

%

peak

Vve[fecti ve = ﬁ

Note that the effective value of the AC source is
equal to the RMS (root-mean-squared) value of
the source voltage, as defined by the function:

T

L1 Vpeat
Voo =V == | v (t)-dt =—L=
effective RMS T J‘ ( ) /_2

0




RMS Magnitudes

The voltage waveform may be expressed in terms
of its RMS voltage magnitude:

w(£) =2V -sin(w-t + §)

peak

v
where: V = NG is the RMS magnitude of the AC voltage.

v(t)

time

RMS Magnitudes

Similarly, the current waveform may also be
expressed in terms of its RMS current magnitude:

i(t) =2 -1-sin(w-t+ @)

peak

1
where: 1= 72 1s the RMS magnitude of the AC current.

i(2)
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RMS Magnitudes & Resistor Power

When the voltages and currents are expressed in
terms of their RMS magnitudes:

V=2V 1 =201

the power delivered to a resistor is:

prO)=V-1-V-I-cos(2-w-t)
with an average (Real Power) value of:

PR(AC) = Avg[pR(t)] = VI

)=

AC Power — General Case

As previously stated, the general expression for the
power produced by an AC source is: i1 1

p(t) =v(t)-i(¢) V(1) q)

- I/P@“k ) ]peak ’ Sln(a) T+ ¢) ) Sln(a) I+ 5)
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where: V() =V, sin(w-1+¢)

i(t)=1,, sin(w-t+9)

pea




AC Power — General Case

If the voltages & currents are expressed in terms of their
RMS magnitudes, the power expression becomes:

p(t)=v(1)-i(?)
:x/E-V-x/E-I-sin(a)-t+¢)-sin(a)-z‘+5)
=2-V-I-sin(w-t+¢)-sin(w-t+0)

which may be modified using several trigonometric
identities into the following form:

p)=V-I-cos(¢p—09)
—V-1-cos(p—0)-cos(2-w-t)
+V-I-sin(¢p—0)-sin(2-w-t)

2

AC Power — General Case

The modified power expression is often simplified by
defining a new variable, 8, where:

0=¢-65
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and substituting it into the equation, resulting in the
general power expression:

p)=V-1-cos(0)
—V-I-cos(8)-cos(2-w-t)
+V-1-sin(@)-sin(2-w-t)




AC Power — General Case

The angle 6, is defined by the difference between the
phase angles of the voltage and current, it) 1
~ o~ +
O=sV-L] =¢-65 oo ,9

such that: V() =V o -SIN(@ 1 + P)

(1) =1 SIN(@ -1+ 0)

The angle 6 is often referred to as the power angle:

3

AC Power — General Case

This general expression defines the instantaneous
power produced by an AC source.
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p)=V-1-cos(@)
—V-1-cos(0)-cos(2-w-t)
+V-1-sin(@)-sin(2-w-t)

Likewise, if the source 1s connected across a load
that may have resistive, capacitive, and/or + i
inductive components, then the solution also @ w0
defines the instantaneous power consumed by ’,
the AC supplied load. '




AC Power and Resistors

The resultant power waveform has two terms:

Pe@) =V I =|Vi-1p-cos(2-@-1)

+
e the first of which is a constant that provides ”(’)(

the average power supplied to the resistor,
which is defined to be Real Power, Py, and

* the second of which is a purely sinusoidal
term that has a zero average value and varies
at 2x the frequency of the source voltage.

P, =V,-I, Watts

AC Power and Inductors

The resultant power waveform has only one term:

p, )=V, -1, -sin(2-w-t)

which is a purely sinusoidal term that has a
zero average value and varies at twice (2x) the
frequency of the source voltage.

Since the power waveform has a zero-average
value, the inductor consumes zero real power:

P, =0 Watts
but power is flowing into and out of the inductor.
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AC Power and Capacitors

The resultant power waveform has only one term:

pc)=|-V.-1.-sm(2-w-t)

+
which is a purely sinusoidal term that has a v(’)(
zero average value and varies at twice (2x) the
frequency of the source voltage.

Since the power waveform has a zero-average
value, the capacitor consumes zero real power:

P. =0 Watts

but power is flowing into and out of the capacitor.

Reactive Power

Reactive Power (Q ) is defined as the magnitude
of the power that is flowing into and out of a
reactive load when supplied by an AC source.

Thus, given: p,@)=V,-1,-sin(2-w-t)
pct)==V,.-1,-sin(2-w-t)

the reactive power for the inductive and
capacitive loads can be defined as:

QOv=+V, -1, Vars
Q. =—V.-1. Vars

13



Reactive Power

Reactive Power is given the unit of “Vars”,
which stands for:

“Volt-Amps-Reactive”.
Qv=+V, -1, Vars
Or=-V.-1. Vars

Note that the reactive power for an inductor is positive
while the reactive power for a capacitor is negative.

Thus, it is often stated that an inductor “consumes”
reactive power while a capacitor “produces” reactive
power.

AC Power — General Case

The previous results can be used to define the
relevance of the three terms that appear in the
general AC power expression:

p(t) =V - 1-cos(6) @
—V-1-cos(8)-cos(2-w-t)
+V-1-sin(@)-sin(2-w-t)

i(?)
General
R,L,C
Load

The first term is a constant that provides the
average or Real Power that is consumed by the
resistive portion of the load:

P=V-I-cos(0)




AC Power — General Case

The previous results can be used to define the
relevance of the three terms that appear in the
general AC power expression:

p)=V-1-cos(0)

it

General

@ o) R,L,C
—V-1-cos(0)-cos(2-w-t) :' Load
+V-1-sin(0)-sin(2-w-t)
The second term is a sinusoidal term that varies ZoRe
at 2x the source frequency and provides the
fluctuation in the power being supplied to the
resistive portion of the load.
AC Power — General Case
The previous results can be used to define the
relevance of the three terms that appear in the
) .
“. general AC power expression: . i
90 ner
he p(t)=V -1-cos(6) “Re

—V-1-cos(@)-cos(2-w-t)
+V-1I-sin(@)-sin(2-w-t)

The third term is also purely sinusoidal, the
magnitude of which provides the Reactive Power
“consumed” by the reactive portion of the load.

Q=V-I-sin(@) Vars

Z=R+jX

Load

15



AC Power in Combination Circuits

Note that, if the load has both a resistive and a
capacitive or an inductive component, then the
power angle 8 will fall somewhere in the range:

it

General
R,L,C
Load

-90°< 0 <+90° @ oo

resulting in the existence of all three terms in
the general power expression.

Thus, there will be Real and Reactive Powers
flowing into the load, as defined by:

P=V-I-cos(0)
Q=V-1-sin(0)

Complex Power

The term Complex Power is used to characterize
both the Real Power and the Reactive Power that

.“: an AC source is producing or that a complex load
‘.‘ impedance (with a resistive component and/or an .
.. inductive or capacitive reactive component) is @

consuming.

Complex Power () is a complex number and is
defined by:

S=P+j0

where: P is Real Power, and

0 is Reactive Power.




Complex Power
Complex Power (S):
S=P+j0
may be solved directly from a circuit element’s *
phasor voltage and phasor current as: C
S=P+j0=V-T"=WVL$)-(1Z-5)
=V-1Z(¢p-0)=V-1/£0
=\V-I-cos@+jV-I sin6

Z=R+jX

the real portion of which relates to Real Power and the
imaginary portion of which relates to Reactive Power.

Complex Conjugate

Note that 7" is the complex conjugate of 7, and
is defined as:

I"=46) =(£-5)

The complex conjugate of a complex number
expressed in polar form has the same magnitude
as the original number but the angle is negated.




Apparent Power

Apparent Power (|S]) is defined to be the
magnitude of complex power:

S|=V-1=yP*+0’

Note that apparent power is often specified as
one of the “ratings” of a machine, such that:

S

=V 1

ated | rated " rated

Power Factor

Power Factor (pf) provides a measure of the portion
of the apparent power that relates to real power:

) "
@ _
¢ pf =g
S 3y
oo
“. Thus, power factor may be defined as:
L 1)
.“ P V-I-cos@ \
o pf=—=———=|cos 0
QX N VI Z=R+jX

Note that power factor is often specified as having a leading or
lagging characteristic, which is based on the angle relationship
between the phasor voltage and the phasor current




Power Factor

A leading power factor exists when the current
waveform is “leading” the voltage, which
occurs with a capacitive load impedance and
results in a negative angle difference for 6:

O=¢-5
~90°< 6 <0°

A lagging power factor exists when the current
waveform is “lagging” the voltage, which
occurs with a inductive load impedance and
results in a positive angle difference for 6:

O=¢p—0
0°< @ <+490°

Power Factor

Note that the angle 6 for a purely resistive load
has a zero value since the voltage and current
waveforms are “in-phase”, resulting in a power
factor that which is neither leading nor lagging.

This is referred to as a unity power factor since
the value of power factor under this condition
equals one.

$p=0
O=¢p—0=0°
cos(@) =cos(0°) =1




Summary of Complex Power Equations

Complex Power (S): S=P+;j0=V-I" 7
Real Power (P): P=V-I-cosf o 126
V = i
]z
Reactive Power (Q): Q=V-1-sin@ @ VZg
Apparent Power (|S|): S|=V-1=yP*+0Q’
Z=R+jX
Power Factor (pf): pf =cosd tJ
L)
oo
‘e
L]
1S
[T ()
“.
9@
(]
o
e Resonance
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Resonance

Resonance is a condition that occurs within an R-L-C circuit
when the reactive power “consumed” by the inductive
elements is equal to the reactive power “produced” by the
capacitive elements.

Note — if the reactive powers are equal, then the energy that
the inductive elements are absorbing (or releasing)
at any point in time will be equal to the energy that
the capacitive elements are releasing (or absorbing)
at that same instant.

The resonant frequency, f,, is the source frequency at which
resonance occurs.

0@

Series-Resonant Circuits

A Series-Resonant Circuit is an R-L-C circuit that contains a
resistor, an inductor, and a capacitor that are connected
in-series with each other.

In a series-resonant circuit, the current will be maximum
when the source is operating at the resonant frequency.

@}

A

Imax

im R L

3

fr

\4
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Series-Resonance

Resonance occurs in a series-resonant circuit when X, = X..

Thus, at resonance, the total series-impedance will be:
Z,=RQ
the magnitude of which will be at its minimum value,
resulting in a current that is in-phase with the source

voltage and at its maximum possible magnitude, /...
|z |7
T 4 ZT:R+j(XL_XC)Q I 0
R 1
f il £ il

e

Series-Resonant Frequency

The resonant frequency is the frequency at which X; equals X.

1
X, =X, —> @ L=——
w-C
1 | 1
o= — —> fi=— | —
L-C 2r VL-C
5 Ve V. Ve ¥
7 » ¥ N 2 A
—>_+wv_ LN = “ - Imax
+ Zrx=RQ Z.=jXLQ Zc=-jXcQ

fr

\4
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Series-Resonance Peak Current

Since the total series-impedance at resonance is:
Z,=RQ
if £ = EZ¢°, then the maximum current magnitude will be:

max Sl I ey
R| R
1]
T R L C |A|
—>_wv nmm ” Imax
Zr=RQ 2.=jXiQ Zc=-jXcQ

©+

fr

\4

Quality Factor

The quality factor, Q,, of a series-resonant circuit is defined by:

Reactive Power

Q =
: Real Power
Thus: QS:COL: 1 :l £
R o-R-C R\NC
5 Ve V. Ve Vi
TR 4
—>_wv ’Ym 1 Imax
+ Zrx=RQ Z.=jXLQ  Zc=-jXcQ

\4

fr
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Quality Factor

Additionally, note that the magnitude of the inductor and
capacitor voltages at the resonant frequency will be:

Ve
7 7

7| [ (x| =2 x = E-0,

P =T i) = Xe=E-0,

l

c

Vi
¥ N N
L

+

——WW\
Zr=RQ

©+

2.=jXiQ Zc=-jXcQ

|7

A

Imax

Ir

\4

Selectivity

The term Selectivity is used to characterize the range of
frequencies for which currents will pass through or flow in
a series-resonant circuit.

Since the current magnitude decays as frequency varies away
from the resonant frequency, arbitrary cutoffs are chosen
in order to define the circuit’s selectivity.

~

Ve
7 »

; + A””v -
+ Zr=RQ

V. Ve
¥ N ¥ N
YN -

11
"

Z.=jXLQ  Zc=-jXcQ

-
|71
A
]max

fr

\4
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The Bandwidth of a series-resonant circuit is the range of

1
P — P Note that peak power occurs
R — max
2 at resonant frequency when
the current is at a maximum.
5 Vi Vi Ve |71
7 h h ’:ﬁ A
——WW\V nmm il Inax
Zr=RQ 2.=jXiQ Zc=-jXcQ

™
©+

Bandwidth

frequencies for which the real power delivered to the
resistor is greater than or equal to one-half of the peak
power value.

Bandwidth
—>

\4

fi o f

\ S 4
a9 Jege, QegeTetyce®
=R -4-O=0)

The Half-Power Cutoff Frequencies are the frequencies at

Note that one-half peak power occurs whenever:

~ I Note that peak power occurs
‘[ ‘ =" =0.7071 max at resonant frequency when
\/E the current is at a maximum.
Vi Vi Ve 7]
T » N » N ¥ N A
—p— AN\ N Al — 1
\'s 11 max
Zrx=RQ Z.=jXLQ  Zc=-jXcQ 0.707

Half-Power Cutoff Frequencies

which the real power delivered to the resistor is equal to
one half of the peak power value.

Imax

Bandwidth
—>

fi o f
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Half-Power Cutoff Frequencies

The lower and upper half-power cutoff frequencies, f; and f,,
can be calculated from:

2 2
fi:L ﬂ_{_l 5 +i Hz f.ZZL £+l E +i = Hz
27| 2L 2 \\ L LC 2z 2L 2 \\ L LC

5 Va Vi Ve 7]
T v N » N ¥ N A
——AAN\— T YN ks ” Inax
. Zr=RQ 2.=jXiQ Zc=-jXcQ 0.707
’\) Imax
Bandwidth
—> =
55

Half-Power Cutoff Frequencies

Note that the resonant frequency, f,, is directly related to the
lower and upper half-power cutoff frequencies, f;, and f,:

S :\/fl'fz

Vi Vi Ve 7]
T N ¥y N ¥ N A
——A\N— YN | I
\ 4 "
+ Zrx=RQ Z.=jXLQ  Zc=-jXcQ 0.707
@ Imax
Bandwidth

fi o f
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Bandwidth

Bandwidth can be defined in terms of the cutoff frequencies as:

BW =f,—f,
Additionally, bandwidth is equal to:
BW = S
S
5 Vi Vi Ve 7]
T v N v N v »
—»—W’ A»V = g g g N - ” - Imax
. Zr=RQ 2.=jXiQ Zc=-jXcQ
EQ
Bandwidth R
fi o f

Filters




Decibels & Logarithms

Decibel — a unit defined by a logarithmic expression that is
commonly used to define the levels of a variety of
parameters including voltage gain, field strength,
energy, and sound pressure.

Logarithm — a quantity representing the power to which a fixed
number (the base) must be raised to produce a
given number.

Given: A=B"
Then: x=log, 4
‘o Logarithms
..‘
[ 1) Commonly used logarithms include:
[0
LI
“.
T4 x=log,, 4 A=10"
o
@ x=log, A A=¢"

Notes: log, 4=2.303-log,, 4

log, A=In4




Properties of Logarithms

* The Log of one (1) is always equal to zero (0).
log,,1=0 log,1=0 log,1=0

* If (A>1) then the Log of A is positive.
log,,2000=3.3 log,5=1.61

* I[f (A<1) then the Log of A is negative.
log,,0.5=-0.3 log,0.1=-2.3

* Additional properties include:

log,a-b=log,a+log,b log, % =log,a—log,b log,a’ =bh-log,a

Bels & Decibels

Power Gain

Bel (B) — a base unit defined as a logarithmic ratio of powers:

P,
B =log,, ?2

1

Decibel (dB) — a logarithmic ratio of powers that is commonly
utilized in order to define the gain (increase) in
power P, compared to power P;.

delO-leO-logw%

1




Properties of Decibels

e If P, = P,, then the decibel gain is zero.

10~10g10M:IO-logml:lO-O:OdB
SmW

e If P, > P,, then the decibel gain is positive.

10~10g10M=10-10g104:10-0_6:+6 dB
SmW

* If P, < P,, then the decibel gain is negative.

ImW
10-1o =10-log,,0.01=10-(-2)=-20dB
gio 100mW Zio (-2)

Properties of Decibels

» If P, =2"-P,, then the decibel gain is n - (+3dB).

P=1mW P =32mW=2"-1mW 10-1og10312LV;V=+15dB=5-(+3dB)
m

 If P, = 72"+ P,, then the decibel gain is n - (-3dB).

B=200W P=25W=()-200Ww 10-1og10%=—9d3=3.(—3d3)

2

* If P,=10"-P,, then the decibel gain is n* (+10dB).

* [f P,=10""-P,, then the decibel gain is n*(—10dB)




dBm

dBm — a specific value of power, relating to a power P, (mW), but
expressed in terms of the decibel gain of P, compared to a
reference power of ImW.

P,
dBm =10-log,, —*—
€10 I mW
For example — convert a power of +6dBm to a mW value:

P
+6dBm=10-log,, —*—
glolmW

+6

P =1mW-10"° =1mW-4=|4mW

Voltage Gain

Voltage Gain (A4,) — a ratio of voltages that is commonly utilized
in order to define the gain (increase) in

:.:. voltage V), compared to voltage V/,,.
L]

‘.‘: A4, = Vou

LT Vi

For example — is an amplifier has a voltage gain 4, = 8, then:

Vin e | Ayy = 8 | i Vout VOut = AV . V}n e 8 . V}n




dBv

dBv — a logarithmic ratio of voltages, expressed in terms of
decibels, that is commonly utilized in order to define the
gain in the power supplied to a resistive load R by
voltage V, compared to the power supplied to the same
resistive load R by voltage V.

v 2 ?
dB = 10-10g10%: lO-longL;2 = 10-10g10% = lO-logw(%J =20-log,, %

1 R 1 1 1

dB, =20-log,,

S

Filters

There are four primary categories of filters:

Vmax — Low-Pass
0,707V max [ N Filter

Low-Pass Filters =

LT S—

High-PaSS Filters 9.707Vaiaz ’,/ llié:-l-lf:ss

Band-Pass Filters

Vmax}|-- v Band-Pass
0.707Vmax " \\F"""'

Stop-Band Filters T2

Vmas —

0.707V max

£




R-C Low-Pass Filter

The following combination of elements can be utilized to create a
R-C Low-Pass Filter:

—JX¢
V.=V -
3 ’\J}:\, i out in R—ch
C—~ !
o o AV_I/aut — _.]XC
Vin R_jXC

R-C Low-Pass Filter

The following plots show the voltage gain and phase response
of the low-pass filter:

v

Ay =i

1
0707 s
o MWy o |
+ R + |
|
0 |
A 3 7

0 (V, leads V)
Pass-band £ Stop-band

T [f(log scale)

33



R-C High-Pass Filter

The following combination of elements can be utilized to create a
R-C High-Pass Filter:

R

I{ I/out = I/m ’ .
> I . R—jX.

& ;
v RE v,

R
O- -0 AV - out -
Vin R - ]XC

R-C High-Pass Filter

The following plots show the voltage gain and phase response
of the high-pass filter:

S,
S04
-
=
M
-

[e]
o= =
(o]

[ (log scale)

‘ Stop-band Je Pass-band

290
o%8
o
fo]

0 (V, leads V;)

age®
%6
==
[
&
T
|
|
|
|
|
|
|

0"
L
I
t
N
=
a

Stop-band /e Pass-band flog scale)




Band-Pass Filter

The following combination of elements can be utilized to create a
series-resonant Band-Pass Filter:

!
Pass-band filter
Y,
V R IRi ﬂpﬂ |f +
vV RN
" o O
f
£ = 1
* 2.x-L-C
R V R
Vou =V 4, ===
R+RL+jXL_jXC V;n R+RL+.]XL ]XC

Bode Plots

Bode Plots are the curves obtained for the magnitude and phase
response (versus frequency) of a system.

Idealized Bode Plots utilize straight-line segments to efficiently
estimate the frequency response of a system.

There is a quick technique for sketching the frequency response
of a system on a decibel scale that provides a good method for
comparing the expected decibel levels at different frequencies.




R-C High-Pass Filter

Lets look back at the R-C High-Pass Filter.

The formula for the voltage gain
can be rewritten as:
I(
. Ik .
" ¢ % : 4, = @ = R.
" il Vi R—-JjXc
o ) B 1
o b
P T ox fR-C
° 27-R-C 1
L
1-j=¢
f
‘o R-C High-Pass Filter
‘.‘
(1) Given the voltage gain for a R-C High-Pass Filter:
[0
LI
.‘. A = Vout _ 1
0 v,
‘ in 1— Jj Jec
() J

the magnitude of the voltage gain can be expressed as:

1
|AV| = = 1

()

9 09" 30
95,020,0%
~




R-C High-Pass Filter

If voltage gain is expressed in decibels, then:

LY
AV =-101 10 1+ =%
| |dB 0g [ +(fj ]

and when f<<f,,

thus:

2
|AV|dB(/,<<./_C) = —lologlo{%j = —2010g10(%] = +2()10g10(%J

3

Bode Plots and High-Pass Filters

Note that, given the decibel voltage gain function ( f<<f,):

f
|AV|dB(f<<fc) =+20 1ogl{7

c

m
o
]
—

%25, 8
050, 00"y
ol 20%:% ¢

For every decrease in the frequency by a factor of 0.5 (one octave),
there will be a 6dB decrease in the gain, and

For every decrease in the frequency by a factor of 0.1 (one decade),
there will be a 20dB decrease in the gain.

Thus, an Idealized Bode Plot can be drawn for the gain function
because the dB change per octave or decade is constant.




Bode Plots and High-Pass Filters

The Bode Plot for the decibel voltage gain function is:

S
|AV |dB(f<<fJ =+20 1Og10 (7

c

Ay g (linear scale)  Idealized Bode plot
S L L/ 20log,y | = 0dB
10 4 2 1 2f. 3f. 5f  10f. /
0 ‘L 1 L -—I L 1
) I 77”7‘77 '.’1’\"\ _1dB f(log scale)
i | RIS _ Actual frequency response
s —6 dB/octave or —20 dB/decade
Ty [ SR—— -7dB
15k
~18F
-20——=1
2 “+20l0ge L

Bode Plots and High-Pass Filters

Additionally, the phase response may be drawn as:

0= tanl(Lj
S

Difference = 5.7

& (V, leads V)
8 = 90

20

~———

H i :
f. L f 101, \“ | I((]l()j; f(log scale)
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Bode-Plots and Low-Pass Filters

Given an R-C Low-Pass Filter, the decibel voltage gain ( f>>f,)

can be written as:
f
|AV|dB(f>>/;) =-20 loglo(T

c

+0
2
+ 0

) resulting in the following Bode Plot:

ol
o]

dB
1 \ /i 2f 10/,
f — 0.1 kHz 2 "4 l_k]lﬂ 2 kHz (log scale) I(: kHz
¢ 2 * 7[ * R * C | e {Ju’dﬁﬁ’:jf‘"” : i}—(}dﬁ i flog scale)
Y e S 1 dB difference :
o s
A = Vou _ 1 -2 e N
V pr— —_ 15 - response
V;n 1+ ] L -18
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Three-Phase Systems

Three-Phase AC Voltage Sources

A three-phase (3®) AC voltage source is a composite source that
can be modeled using three single-phase AC voltage sources
that are connected together to function as one complete unit.

Note that the three single-phase AC voltage sources must be connected
together in a symmetrical fashion.




Wye-connected Three-Phase Source

The three sources are typically connected
together in a “Wye” (Y) format such that the
reference terminals of the three supplies are
tied to a common point of connection.

The common point of connection is referred to
as the “neutral point”.

(node n in the figure)

Note that the neutral point is often grounded in order
to provide a zero-volt reference for the source.

Phase Voltages

", V,,and V. are referred to as
“phase voltages” because they correspond to
the voltage across each individual phase of the
wye-connected source.

The voltages v

The phase voltages are sometimes referred to as
“line-to-neutral voltages”, and as such may be
expressedasV, ,V, ,and V.
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Phase Currents

Similarly, the currents 7 , T, ,and I, are
referred to as “phase currents” because they
correspond to the current flowing through
each individual phase of the wye-connected
source.

Balanced Three-Phase Voltage Source

all

A “balanced’ 3O source is a source whose
phase voltages have equal magnitudes and
phase angles that are separated by 120°.

Note that, despite slight magnitude differences
that might exist between the three individual
phases, most practical 3® sources are
assumed to be balanced.




Line Voltages

A second set of voltages can also be defined
for the 3® source in terms of the voltage rise
between each pair of terminals:

a-b, b-c, and c-a.

The voltages I7ab , 17,,c and 17% are referred to as
“line voltages™ because they are the voltages
between any pair of line terminals.

Line Voltages

The line voltages for a balanced 3® source are
closely related to the source’s phase voltages.

The same logic can be used to express all three
line voltages in terms of their respective
phase voltages:

l

VYabZ a_VYb
e =Vp Ve
ca = c_Va
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Line Voltages

A complete analysis of a 3® source having the
phase voltages:

V,=vige
V,=VZ$—120°
V. =VL$-240°
will result in the following set of line voltages:
. =~3-VL$+30°
7, =~3-VZLp-90°
V., =3-VZ$-210°

Line Voltages

Note that the line voltages have equal magnitudes

and a 120° phase separation between each pair;

Thus, the line voltages maintain the same
balanced relationship as the phase voltages:

Phase Voltages Line Voltages
J =V V., =~3-VZ$+30°

V,=VZ$-120° T =+[3-VL$-90°
V.=VZ$-240° T =\3.VLp-210°
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Phase < Line Voltage Relationship

A comparison of the phase and line voltages:
V.=VZ¢® V,=~3-VLp+30°

reveals that the line voltages are:
« \/3x greater in magnitude, and
* 30°greater in phase angle
compared to the phase voltages.

= (/3£30°)-7,
e = (3230°)-7,
(3230°)-V.

0
Il

U o

C
ca

~

3

Wye-connected Three-Phase Loads

™
]
—

0¥
8.0

A wye-connected, three-phase load is
T2 T1

constructed by connecting one end of the
three individual loads to form a common Zx Zy
(neutral) node.

The opposite end of the three individual
loads provide the terminals for connection H Zx
to a 3@ system.

T3

These terminals are often defined as load
terminals T1, T2, and T3.




Wye-connected Loads in 3® Systems

Three wires or “lines’ are used to connect the source terminals to
the terminals of the Y-connected load.

A “neutral wire” can be added to connect the grounded neutral-
point of the source to the center-point of the load, holding both
neutral points at a zero-volt potential.

Wye-connected Loads in 3® Systems

Note that the voltage potential present on each line (w.r.t. the
neutral wire) is equal to the phase voltage of the source’s phase
to which the line is connected.

Thus, the four-wire connection results in the presence of a phase
voltage across each phase of the load.




Wye-connected Load Currents

A set of line currents (T, , T, and ) can be defined that flow
from each phase of the source, down the lines and into the
individual phases of the load.

A neutral current (] ) can also be defined that flows in the
neutral wire from the load back to the source.

3

Wye-connected Load Currents

m
]
—

0¥
8.0

Since the phase voltages of the load and source are equal, the
line currents can each be solved independently by applying
Ohm’s Law at each load.




Wye-connected Load Currents
Furthermore, if the source voltages are balanced and the load

impedances are all equal, then the line currents will also be
balanced.

I,=1/6 I,=1£6-120° 1 =I1/5-240°

Complex Power in 3® Systems

The total complex power produced or consumed by a 3® source
or load is equal to the sum of the complex powers produced or
consumed by each of the source’s or load’s three individual
phases.

S =8, +S5,+S,




Complex Power in Y-connected Loads

In the case of a 3@, Y-connected load, the complex powers
consumed by each of the load’s three individual phases are:

2

Complex Power in Y-connected Loads

™
]
—

0%
o

..‘“ Thus, the total complex power consumed by a balanced, 3®,
‘.“‘ Y-connected load will be equal to 3x the power consumed
“‘ by any individual phase:

(]

‘.:. Sip=S,+S,+8,=3-S,,

@

‘.‘. allowing the total complex power to be

‘.‘. expressed in terms of a single phase:

o:o: Sy =3-V.- I =3.V-IL$p-6

8

‘.“ where: 7 =v/4

S ~

X T,=1/5

a




Neutral Current in 3® Systems

In a balanced system, the neutral current ], will be:

~

I, =1 +1,+1 =1/8+1£(5-120°)+14(5-240°) =0

If the line currents are balanced, then they will sum to zero
- no current will flow in the neutral wire.

Transformers




AC-Supplied Coil

If a coil is supplied by an AC-source, e,(1), then a time-varying
magnetic flux, @,, will be created, as defined by:

AP, (1)
d

ep(t)=Np

(Faraday’s Law)

the field lines of which will pass through the center of the
coil and then back around the outside in order to form
closed-loops.

ey (1) Np

lanaaAa~n
=

N, =number of turns

Self-Inductance
Self-inductance, L,, can be defined as:
oo dd, (1)
5 ‘. L,=N, —2—=
o dip (1)

such that L, is proportional to the rate of change in the flux
created by the coil over the rate of change in the current
flowing through the coil.

ip(1)

ep(?) Np

W\
UUUUUY

N, =number of turns




Mutually-Linked Coils

If a second coil is placed such that some of the flux passes
through the coil, then a voltage will be induced across the
second coil, also defined by:

do, (1)

e (1) =N - (Faraday’s Law)

where: @, is the flux that passes through the second coil.

DN ) ey (1)

AnAaAA
o

A" A A AA~A"S
0

SSENE]SS==

ey (1) Np
N, =number of turns _N;E number of turns
Self-Inductance

Note that, if an AC source is connected to the second coil, a

.“‘ self-inductance, L, can also be defined for that coil:
)

0

“ L, =Ny @ (Henries)

(1) di (1)

such that Lg is proportional to the rate of change in the
flux created by that coil over the rate of change that coil’s
current.

O

i5 (1)

D

[0)

»

D
DN ey ()
D
D

'8
-0
-\e'\-

|

oW W W_W_W_Y

N =number of turns




Coupling Factor

A coupling-factor, &, can be defined as:

Lo P
D, (1)
such that & is the ratio of the flux created by the first coil

that passes through the second coil over the total flux
created by the first coil.
ub N, ) e (1)

¢ —

ey (1) Np

AnAaAA
o

A" A A AA~A"S
0

SSENE]SS==

N, =number of turns N =number of turns

Mutual Inductance

Furthermore, a mutual inductance, M, can be defined as:
d®,, (1)
di, (1)
such that M is proportional to the rate of change in the flux

that passes through the second coil over the rate of change
in the current flowing through the first coil.

(Henries)

M =N,

¢ pl |
¢ H
(1) N, ¢S qi“ Ny es(?)
q
q
¢ He
N, =number of turns N =number of turns
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Mutual Inductance

Furthermore, a mutual inductance, M, can be defined as:
dP, (1)
dip(?)

such that M is proportional to the rate of change in the flux
that passes through the second coil over the rate of change
in the current flowing through the first coil.

DN ) ey (1)

¢ —

=N,

(Henries)

ey (1) Np

AnAaAA
&

A" A A AA~A"S
0

SSENE]SS==

N, =number of turns N =number of turns

Mutual Inductance

It also turns out that the mutual inductance, M, can be
expressed in terms of the self-inductances of the coils as:

M=k-\L,-L, (Henries)

¢ pl |
¢ H
(1) N, ¢S qi“ Ny es(?)
q
q
¢ He
N, =number of turns N =number of turns
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Mutually-Linked Coils

Note that the voltage, e (), induced across the second coil by
the mutually-linked flux created by the first coil can be

expressed in terms of the mutual inductance as follows:
di,(t
e,(t)y=M Aip () (volts)
dt

D Ul |

| a

ep(f) NS @1 p di Ny e (1)

D

' u) o

N, =number of turns N =number of turns

Iron-Core Transformers

An “ideal” iron-core transformer consists of two coils that are
mutually-linked by an iron core that provides an “ideal”
closed-loop path for the flux created by the first coil.

If all of the flux stays within the iron core, then all of the flux
created by the first coil will pass through the second coil:

D), (1) =P, (t) =Dy (1)
i (1)

) eg (1)

N =number of turns

(=)
s © i

UUUUUY
0
-
=

q
q
ep(t) NP:
q

—

N, =number of turns




Mutually Linked Coils

If the magnetic core is assumed to be ideal, then the total flux
created by the sourced coil will pass through the second coil.

Since a time-varying flux passes through the second coil, a
voltage will be induced across that coil, also defined by:

Ideal Transformer

Mutually Linked Coils

L)
:‘.‘ If the total flux passes through both coils, then the rate of
.“ change, %, of the flux through the coils must be the same.

The following relationship may be derived by solving for %

in both coils and equating the results:

&5 ° -
09 E, _dd,(t) _E,

N dt N
o : ,

Ideal Transformer




Voltage Relationship

The relationship between the two coil voltages is typically
expressed as a ratio of the voltages, which equals to the
ratio of their respective number of turns.

(I.e. — the “turns ratio” of the transformer).

Ideal Transformer

Turns-Ratio

The ratio relationship, referred to as the turns ratio (a):
E N

p_'p

E N

N N

defines the basic operation of an ideal transformer in terms
of the primary and secondary voltages.

Ideal Transformer
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Determining the Polarity Relationship

If a load is connected to the second winding, then a current
will flow out of the secondary winding and through the load
due to the induced voltage.

Ideal Transformer

Secondary Current Effects

But, the existence of a counter-flux produced by the current
that is flowing in the second coil would tend to decrease the

(L)

..‘ overall flux within the magnetic core, in-turn decreasing the
:‘. total flux passing through the primary coil.

4 Dy, =D, —Dg

Ideal Transformer




Secondary Current Effects

Assuming that the source is ideal, this presents a problem
because Faraday’s Law does not allow for a change in the
flux passing through the primary coil unless the supply
voltage changes accordingly.

Ideal Transformer

Secondary Current Effects

Thus, the existence of the secondary current’s counter-flux
requires that a additional (primary) current be drawn into
the primary winding.

The primary current will, in-turn, create an additional flux
component, @, within the core that is equal in magnitude
but opposite in direction compared to the secondary flux ..

Ideal Transformer




Primary Current

Since the primary and secondary fluxes are equal in magnitude
but opposite in direction, they will cancel, leaving the net
flux in the core the same as defined by Faraday’s Law
applied to the primary winding:

(I)Net :cDM _CDS+q)P :cDM

Ideal Transformer

Primary/Secondary Current Ratio

Based on the MMF relationship applied to both coils:
N-i(t)=D(r)-R
the ratio of the primary and secondary currents must be:

Ideal Transformer




Overall Operation of Ideal Transformer

Thus, the overall operation of the ideal transformer that
supplies a single load can be defined by the following set of
equations:

turns ratio a:VP a=-=> 2L =— I =

Ideal Transformer

Ideal Transformer Equivalent Circuit

The following equivalent circuit will be used to represent an
ideal transformer:

Ip N, NG s

> >
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8,0%6,0%
N}
Il
z|
“
“

=— a = turns ratio




Ideal Transformer Definitions

Primary Winding = the winding that creates the mutually-linked
flux (I.e. — the sourced winding).

Secondary Winding = the winding across which a voltage is
induced (I.e. — the load winding).

Note — the primary & secondary winding designations can also be defined in terms
of the power flow direction (I.e. — the source & load connections)

Ideal Transformer

Ideal Transformer Definitions

High-Voltage Winding = the winding with the larger voltage magnitude.
(I.e. — the coil with the larger number of turns)

Low-Voltage Winding = the winding with the smaller voltage magnitude.
(I.e. — the coil with the smaller number of turns)

Note — the high-voltage winding will have the larger number of turns while the
low-voltage winding will have the smaller number of turns.
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Ideal Transformer




Ideal Transformer Definitions

Step-Up Transformer = a transformer whose voltage increases
from primary to secondary winding.

Step-Down Transformer = a transformer whose voltage decreases
from primary to secondary winding.

Notes: A step-up transformer’s turns ratio will be less than one (a<1).

A step-down transformer’s turns ratio will be greater than one (¢>1).

lp Np © Ns Is

vsource EP Es Zioad

Ideal Transformer

Input Impedance

Thus, the input impedance of an ideal transformer is equal to its
turns-ratio squared times the impedance of its connected load:

in

_ 2 7
=da ZLuad =Z Load

I i1
ree N,
E§

1

a

Ideal Transformer
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