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Single-Phase AC Voltage Sources

A (single-phase) AC voltage source is a source whose
voltage varies sinusoidally, as defined by the function:

V() =V SIN(@ -1 + @) 0
v

where: V., is the peak value of the voltage,

peak
o is the angular frequency (2xf) of the waveform, and

@ is the phase angle of the waveform.
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Single-Phase AC Voltage Sources

The voltage waveform may also be expressed in terms
of its RMS voltage magnitude:

V(1) =2 Vs -sin(w-1+ @) @v(t)

is the RMS or “effective” voltage magnitude of the AC
waveform.

peak

where: Vi = Nl

v(t)

i

Single-Phase AC Voltage Sources

When performing a steady-state AC analysis, voltages
(and currents) are often expressed in “phasor” form:

V=Ve =V _

where: ¥ is the RMS magnitude of the voltage, and

@ is the phase angle of the waveform.

(1)
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Three-Phase AC Voltage Sources

A three-phase (3®) AC voltage source is a composite source that
can be modeled using three single-phase AC voltage sources
that are connected together to function as one complete unit.

Note that the three single-phase AC voltage sources must be connected
together in a symmetrical fashion.

Wye-connected Three-Phase Source

The three sources are typically connected
together in a “Wye” (Y) format such that the
reference terminals of the three supplies are
tied to a common point of connection.

The common point of connection is referred to
as the “neutral point™.

(node n in the figure)

Note that the neutral point is often grounded in order
to provide a zero-volt reference for the source.




Wye-connected Three-Phase Source

If the remaining nodes are labeled a, b, and ¢,
then:

« Then the voltage ¥V, can be defined as the
voltage-rise from the neutral point n to
node a.

« Similarly, voltages 7, and 7 can be
defined as the rises from node n to b and
node n to ¢ respectively.

Phase Voltages

", V,,and V. are referred to as
“phase voltages” because they correspond to
the voltage across each individual phase of the
wye-connected source.

The voltages v

The phase voltages are sometimes referred to as
“line-to-neutral voltages™, and as such may be
expressedasV, ,V, ,and V.




Phase Currents

Similarly, the currents 7 , T, ,and I, are
referred to as “phase currents” because they
correspond to the current flowing through
each individual phase of the wye-connected
source.

{
zZZ8
) = 4

Wye-connected Three-Phase Source
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Both of the figures shown to the right
depict the same 3® source. The only
differences are that the bottom figure has
the three phases drawn in either a vertical
or a horizontal orientation and a that wire
has been connected to the neutral point to
provide a forth point of connection.

Note that the phase voltages are also shown
in the bottom figure, but this time with
respect to the four point of connection,
terminals a, b, ¢, and n.




Wye-connected Source Terminals

The primary source terminals or connection
points are nodes a, b, and c.

Nodes a, b, and ¢ are sometimes defined as
line terminals L1, L2, and L3 because
they are the terminals to which the three
lines of a 3® transmission line (cable)
will be connected.

The line connected to the neutral-point is
often referred to as the “neutral line”.

Balanced Three-Phase Voltage Source

all

A “balanced” 3® source is a source whose
phase voltages have equal magnitudes and
phase angles that are separated by 120°.

Note that, despite slight magnitude differences
that might exist between the three individual
phases, most practical 3® sources are
assumed to be balanced.




Balanced Phase Voltages

If expressed as phasors, a balanced set of the
phase voltages can be defined as follows:

<t

a1
I

VZg
= VL$—120°
V.=VZ$—240°

=

l

where: V' is the RMS magnitude of the voltages, and

@ is the phase angle of the phase a source.

Phase Voltages

The figure below is a plot of a balanced set of
phase voltages:
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V. =V/p—240°

as a function of time with @ = 0° as shown.
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Phase Sequence

Note that the voltage relationships:
=V/$

<t

7,
V, =VZ$—-120°
V.=V/$—240°

define a “positive-sequence” (a-b-c) source
since phase a leads b and phase b leads c.

Va(t) Vb(t) V()
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Phase Voltage Example

Given the phase voltage:

Vv, =120£40°

determine the other phase voltages V,and V..

If 17(1 =V/¢,then V=120 volts and ¢ =40°, thus:

V. =VZp=120£40° V. =120£40°
/. =V/$—-120°=120/-80° > |V, =120L—80°
V. =VZ$—240° =120/ —200° / =120/ -200°




Line Voltages

A second set of voltages can also be defined
for the 3® source in terms of the voltage rise
between each pair of terminals:

a-b, b-c, and c-a.

The voltages I7ab , 17,,c and 17(:[, are referred to as
“line voltages” because they are the voltages
between any pair of line terminals.

Line Voltages

The line voltages for a balanced 3® source are

closely related to the source’s phase voltages.

For example, the line voltage defines the V/,
voltage rise from terminal b to terminal a,
and can be expressed in terms of the phase
voltages by the KVL equation:

~

I7ab:_ b+i7azﬁa_l7b




Line Voltages

The line voltages for a balanced 3® source are
closely related to the source’s phase voltages.

The same logic can be used to express all three
line voltages in terms of their respective
phase voltages:

~

Ith = Va 171;
Ve =V, =V,
Ve =V~ V,
Line Voltages

Given a balanced 3® source that has the phase
voltage:

V.=VL®

the line voltage V, for that source can be
determined as follows:

V=V,-7,
—VLP® — VLF—120°
=3 VZL$+30°
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Line Voltages

A complete analysis of a 3® source having the
phase voltages:

V,=vige
V,=VZ$—120°
V. =VL$-240°
will result in the following set of line voltages:
. =~3-VL$+30°
7, =~3-VZLp-90°
V., =3-VZ$-210°

Line Voltages

Note that the line voltages have equal magnitudes

and a 120° phase separation between each pair;

Thus, the line voltages maintain the same
balanced relationship as the phase voltages:

Phase Voltages Line Voltages
J =V V., =~3-VZ$+30°

V,=VZ$-120° T =+[3-VL$-90°
V.=VZ$-240° T =\3.VLp-210°

11



Phase < Line Voltage Relationship

A comparison of the phase and line voltages:
V.=VZ¢® V,=~3-VLp+30°

reveals that the line voltages are:
« \/3x greater in magnitude, and
* 30°greater in phase angle
compared to the phase voltages.

= (/3£30°)-7,
e = (3230°)-7,
(3230°)-V.
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Phase < Line Voltage Relationship

Thus, given a balanced 3® source, the following

(O phase-to-line voltage relationships can be used
() . :
“‘ to specify the complete set of phase and line
) voltages:
L]
L
. Phase Voltages Line Voltages
.‘. ~ ~
o:‘ V,=VZg 7 —\BVL$+30°
oo V,=VZ$-120° V, =~3-VLp—-90°

V.=VZ$-240° 7. =3-V/$-210°




Line Voltage Example

Given a 3® source with phase voltages:

V. =120£40°
V, =120£—-80°

~

V. =120£-200°

determine the line voltages V, , V. and V.

ca *

., =(N3£30°)-7, = (+/3£30°)-120£40°  =[208270°

7. =(3430°)-7, =(\3£30°)-120£-80° =[208.2-50°
V. =(3230°)-7 =(/3230°)120.£ - 200° = [208.£ —170°

1® Voltages Available from 3® Source

A single-phase load may be supplied from a
three-phase source if the load is connected
across two of the source’s terminals.

If the load is connected between a line terminal
and the neutral terminal, then a phase voltage
will appear across the load.

13



1® Voltages Available from 3® Source

A single-phase load may be supplied from a
three-phase source if the load is connected
across two of the source’s terminals.

If the load is connected between two of the
line terminals, then a line voltage will appear
across the load.

1® Voltages Available from 3® Source

A single-phase load may be supplied from a
three-phase source if the load is connected
across two of the source’s terminals.

If the load is connected between two of the
line terminals, then a line voltage will appear
across the load.

Note — if the neutral terminal is not available, then
only the line voltages can be received from
the supply and not the phase voltages.




Balanced Three-Phase Loads

A three-phase load consists of three individual loads that are
connected together to form a symmetrical, composite load that
1s supplied by a 3@ source.

A balanced 3® load is constructed using three loads that all have
the same impedance value.

When a balanced 3® load is connected to a balanced 3® source,
the resultant currents will also maintain a balanced relationship
similar to that of the phase or line voltages.

2

Three-Phase Load Configurations
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There are two different load configurations that can be utilized
in order to connect the three individual loads together in a

“‘ symmetrical manner:
2
s
“‘. * Wye (Y)
@
C 1) * Delta (A)




Wye-connected Three-Phase Loads

A wye-connected, three-phase load is

constructed by connecting one end of the
three individual loads to form a common Zx Zy
(neutral) node.

The opposite end of the three individual
loads provide the terminals for connection H Zx
to a 3@ system.

These terminals are often defined as load
terminals T1, T2, and T3.

3

Delta-connected Three-Phase Loads

A delta-connected, three-phase load is
constructed by connecting three impedances
together as shown to the right.
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The three nodes that connect each pair of
impedances provide the terminals for
connection to a 3® system.




Wye-connected Three-Phase Loads
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Wye-connected Loads in 3® Systems

The simple 3® system shown below consists of a wye-connected
source and a wye-connected load.

The neutral-point of the source is grounded to provide a zero-volt
reference for the system.

17



Wye-connected Loads in 3® Systems

Three wires or “lines” are used to connect the source terminals to
the terminals of the Y-connected load.

A “neutral wire” can be added to connect the grounded neutral-
point of the source to the center-point of the load, holding both
neutral points at a zero-volt potential.

Wye-connected Loads in 3® Systems

Note that the voltage potential present on each line (w.r.t. the
neutral wire) is equal to the phase voltage of the source’s phase
to which the line is connected.

Thus, the four-wire connection results in the presence of a phase
voltage across each phase of the load.




Wye-connected Load Currents

A set of line currents (7, , 7, and 7. ) can be defined that flow
from each phase of the source, down the lines and into the
individual phases of the load.

3

Wye-connected Load Currents
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Asetof line currents (7, , 7, and 7. ) can be defined that flow
from each phase of the source, down the lines and into the
individual phases of the load.

A neutral current (Tn) can also be defined that flows in the
neutral wire from the load back to the source.




Wye-connected Load Currents

Note that the line currents may also be referred to as
- phase currents of the source, or
- phase currents of the load

because they flow through the individual phases of both the
source and the load.
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Wye-connected Load Currents

If the source voltages and load impedances are all known, then
the line currents and the neutral current can all be determined
using basic circuit theory.

20



Wye-connected Load Currents

Since the phase voltages of the load and source are equal, the line
currents can each be solved independently by applying Ohm’s
Law at each load.
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Wye-connected Load Currents
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Furthermore, if the source voltages are balanced and the load
impedances are all equal, then the line currents will also be
balanced.

I,=1/6 I,=1/6-120° 1 =I1/5-240°




Complex Power in 3® Systems

The total complex power produced or consumed by a 3® source
or load is equal to the sum of the complex powers produced or
consumed by each of the source’s or load’s three individual
phases.

S0 =S,+S5, +8,

Complex Power in Y-connected Loads

In the case of a 3®, Y-connected load, the complex powers
consumed by each of the load’s three individual phases are:
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Complex Power in Y-connected Loads

If the system is balanced, with voltages and currents:
=V/$

V. =148
V, =VZL$—120°
v,

I,
I, =1/8-120°

= V/$—240° I =1/45-240°
then:

!
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=[vz¢l{12-(5)] —VILp-5
=[Vzp-120°)[1£-(5-1209)] =V - I1L¢p-5
“=[VsLp-240°)[1L—(5-240°)]=V - ILp-5
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) Complex Power in Y-connected Loads
gl )
..‘ If the system is balanced, with voltages and currents:
sse
(o5 V.=V/¢ I,=1/5
g ~ ~
S V,=V/$-120° I,=1/5-120°
[ 1) ~ ~
Y. V.=V/$-240° I, =1/5-240°
L then:
()
.“ o~
.‘:‘ 5. = I: i =V-12¢-0 all three phases
% S,=V,-1,=V-1/¢-65 will consume equal
‘.‘. S <V T =V-I/p—5 complex powers.




Complex Power in Y-connected Loads

Thus, the total complex power consumed by a balanced, 3@,
Y-connected load will be equal to 3x the power consumed
by any individual phase:

S =8, +85,+S5,.=3-5¢

allowing the total complex power to be
expressed in terms of a single phase:

Sy =3V I =3.V-IL$p-5

where: V=vs

SN
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Complex Power in Y-connected Sources
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Additionally, the total complex power produced by a
balanced, 3®, Y-connected source will be equal to 3x the

::‘ power produced by any individual phase:
[
‘.:. Sip=S,+S,+5,=3-S,,

@
‘.‘. allowing the total complex power to be
‘.‘. expressed in terms of a single phase:
o:o: Sy =3-V.- I =3.V-IL$p-6
8
““ where: 7 =v/4
o ~
X T,=1/5

a




Neutral Current in 3® Systems

The neutral current 7 can be determined by solving the node
equation:

~

I,=I,+I,+1,

Neutral Current in 3@ Systems

In a balanced system, the neutral current will be:

~ ~

I,=1,+1,+1 =1/8+1/(5-120°)+ /(5 -240°) =0

If the line currents are balanced, then they will sum to zero
- no current will flow in the neutral wire.




Neutral Wires in 3® Systems

If the system is balanced such that the neutral current is zero,

Then removal of the neutral wire will theoretically have no
effect on the operation of the system.

Neutral Wires in 3® Systems

Although removal of the neutral wire will not affect the operation
of a balanced system, the importance of the neutral wire comes
into play during times of unbalanced operation during which it’s
existence can greatly affect the system.




3® Wye-connected Load Example

Given a 480V, 3@, Y-connected, positive-sequence, balanced
source that is supplying a Y-connected, balanced load with
individual per-phase impedances:

Z, =80 +j60 Q,

3® Wye-connected Load Example

Given a 480V, 3@, Y-connected, positive-sequence, balanced
source that is supplying a Y-connected, balanced load with
individual per-phase impedances:

Z, =80 +j60 Q,

Determine:

a) all of the phase and line voltages in the system,

b) all of the line currents in the system, and

¢) the total complex power provided by the source to the Y- load.

Note — choose the angle of the phase voltage I7a to be the 0° reference angle.




3® Wye-connected Load Example

Since the source is a Y-connected, positive-sequence, balanced
source, the phase and line voltages will adhere to the following
relationships:

Phase Voltages Line Voltages
V.=V V., =3-VL$+30°
V,=VZ$-120° V, =~3-VL$—90°
V. =V L $—240° V.o =\3-VZp-210°

The values of V and ¢ can be determined from the information
provided in the problem statement.

3® Wye-connected Load Example

Phase Voltages Line Voltages
V.=VsZg V., =~3-VZp+30°
V,=V/$—-120° V. =3-VL$—90°
 =VL$—240° V. =\3-VZ$-210°

Standard: if a single voltage magnitude is specified for a 3® source, then
the value specified is the source’s line-voltage magnitude.

Thus, given a balanced 480V source, the line and phase voltage
magnitudes can all be specified as:

Vie =\3-V=480volts > V. =V= 41750 =277 volts

28



3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =2712¢ V., =480L¢+30°
V, =277/$-120° V, =480Z¢—90°
 =277/$—240° V= 4802L$—210°

Standard: if a single voltage magnitude is specified for a 3® source, then
the value specified is the source’s line-voltage magnitude.

Note — if the source is Y-connected with an accessible neutral point, then the
line and phase voltage magnitudes are often specified for convenience.

l.e. —480/277V

3® Wye-connected Load Example

Phase Voltages Line Voltages
V.=271/¢ V., =480L¢+30°
V, =277£$—-120° V. =480L$—90°
=277/ ¢—240° V., =480/¢-210°

As with any steady-state AC circuit solution, the first phase angle in a
3® circuit may be chosen arbitrarily, after which all other phase angles
(voltage and current) must be calculated based to the initial choice.

For convenience, the first angle is often chosen to be 0°.

29



3® Wye-connected Load Example

Phase Voltages Line Voltages
V.=2712¢ V., =480L¢+30°
V, =277/$-120° V, =480Z¢—90°
. =277/¢-240° V= 4802L$—210°

In this example, the problem statement instructed that an initial angle of
0° was to be chosen for the phase voltage 7, .

Thus, as defined in the relationships shown above:
¢=0°
to which all of the other angles can be referenced.

3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =277£0° V, =480£+30°
V, =277£-120° . =480£—-90°
=277/ -240° V., =480/-210°

The phase and line voltages are shown in the figure below:

30



3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =277£0° V., =480£+30°
V, =277/£-120° V,. =4802£-90°
V. =277/-240° y  =480£-210°

Now that all of the voltages have been specified in the system, the next
step is to solve for all of the line currents that will flow in the 3®
system from the source to the load.

3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =277£0° V, =480£+30°
V, =277£-120° V. =480£-90°
V. =2774-240° /. =480/ -210°

Since both the source and the load are both balanced, the resultant line
currents will also be balanced.

Because of this, the complete set of line currents may be determined by
first solving for one of the currents and then utilizing the balanced
relationship in order to specify the remaining currents.
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3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =277£0° V., =480£+30°
V, =277/£-120° V,. =4802£-90°
V. =277/-240° y  =480£-210°

Applying Ohm’s Law to “phase a” of the load
results the line current:

7 _V. 21120

] - =2.77/-36.9°
Z, 80+ /60

from which the remaining line currents can be solved.

3® Wye-connected Load Example

Phase Voltages Line Voltages
V. =277£0° V, =480£+30°
V, =277£-120° . =480£—-90°
=277/ -240° V., =480/-210°

Given:  1,=277/-36.9° > 1=277 &=-36.9°

The remaining line currents can be determined from:

Balanced Relationships Line Currents
I,=1/8 I,=2.77/£-36.9°
I,=1/6-120° >  1,=277/-156.9°
T =1/5-240° 1.=277/-276.9°

32



3® Wye-connected Load Example

Phase Voltages Line Voltages Line Currents
y =277£0° V., =480£+30° I,=2.77/-36.9°
V, =2774-120° ¥, =480£-90° I,=2.77£-156.9°
j =277/-240° V., =4804£-210° I,=2.77/-276.9°

The voltages and currents are showln in the figure below:

3® Wye-connected Load Example

Phase Voltages Line Voltages Line Currents
) V, =27720° V,, =480£+30° I,=2.77£-36.9°
(L) - ~ ~
b S L, =27724-120° 7, =480£-90° 1,=2.77£-156.9°
% V,=271£-240°  V, =480£-210° I, =2.77/-276.9°

Now that all of the voltages and currents have been specified in the
system, the next step is to solve for the total complex power that
will be provided from the 3® source to the 3® load.




3® Wye-connected Load Example

Phase Voltages Line Voltages Line Currents
V. =27720° V., =480£+30° I,=2.77/-36.9°
V,=2774-120° ¥, =480£-90° I,=2.77£-156.9°
V.=277£-240° V., =480£-210° I,=2.77/-276.9°

Since the total complex power produced/consumed in a balanced,
3® system is equal to 3x the complex power produced/consumed
in a any individual phase:

Sy =3V, -1 =3-[277£0°]-[2.77£ - (-36.99)]
=3.[614.4+ j460.8]=1843.2 + j1382.4

3® Wye-connected Load Example

Phase Voltages Line Voltages Line Currents
V. =27720° V., =4802+30° 1,=2.77/-36.9°
V,=2774-120° ¥, =480/-90° I,=2.77/-156.9°
V.=277/-240°  V, =480£-210° I,=277/-276.9°

If desired, the complex power result:

S,o =1843.2+ j1382.4
can be broken down into its real and reactive power components:

P, =1843.2 Watts 0, =1382.4Vars
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Delta-connected Three-Phase Loads

Za Za

Za

=8
850,

™
]
—

18,0202 %258
ol a8 %% 2e%
20 02 2% % 0

Delta-connected Loads in 3® Systems

The simple 3® system shown below consists of a wye-connected
source and a delta-connected load.

The neutral-point of the source is still grounded to provide a zero-
volt reference for the system.
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Delta-connected Loads in 3® Systems

Three “lines” are also used to connect the source terminals to the
terminals of the A-connected load.

Note that no neutral wire can be connected to the load because the
A-connected load has no central node to which the wire can be
symmetrically connected.

Zan Za
Za
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Delta-connected Load Voltages
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The voltage potential between each pair of lines is equal to the
line voltage of the source.

<!




Delta-connected Load Voltages

The voltage potential between each pair of lines is equal to the
line voltage of the source.

Since each phase of the A-connected load connects across a pair
of lines, the three-wire connection provides a line voltage
across each phase of the load.

<1

2

Delta-connected Load Currents
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A set of line currents ( I, 1, and Tc) was defined to flow in the
lines from the source to the load.

Although the line currents flow through each phase of the source,
they do not flow through the individual phases of the A-load.




Delta-connected Load Currents

In order to fully characterize the A-connected load’s operation, a
set of phase currents (7,,, 7, and [ ) that flow through the
individual phases of the load must also be defined.
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Delta-connected Load Currents
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If the line voltages and load impedances are known, then the
phase currents of the load can each be solved independently
by applying Ohm’s Law for each phase:
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Delta-connected Load Currents

Furthermore, if the source voltages are balanced and the load
impedances are all equal, then the phase currents of the load
will also be balanced.

I,=1,28 I,=1,/B-120° I,=1,/5-240°

)=

Delta-connected Load Currents
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Once the phase currents of the load have been determined, the
line currents flowing into the load may also be determined by
solving a node equation for each of the three connection points
to the load.
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Delta-connected Load Currents

Given the balanced set of phase currents:
I,=1,28 1I,=1/8-120° T, =1I,/-240°
the line current Ta can be determined as follows:
I,=1,-1,
=1,2£p—-1,2(F—-240°)
=V3-1,£(5-30°)
= (\3£-30°-1,

3

Delta-connected Load Currents
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Since the phase currents are balanced:

Iy=1,2B T,,=1,£p~-120° I, =1,/p~240°

the resultant line currents will also be balanced,

“. allowing a complete set of phase-to-line current
b5 relationships to be defined:

® - ~

Y I,=(32£-30°1T,

g 7 7 E
28 I,=(3£-30°)1, ,
D -3, 1.,




Phase < Line Current Relationship

The phase-to-line current relationships can
then be used to specify a complete set of
currents for a balanced, A-connected load

as follows:

Phase Currents Line Currents
Tab:IAZﬂ ZIZ\/E'IAZIB_%)O
I, =1,/-120° T, =~3-1,28-150°
I,=1,8-240° T =\3.-1,/8-270°

Phase < Line Current Relationship

Note — to correspond with the line-currents

.“‘ defined for the Y-connected load, the phase
5 “ and line current expressions can be rewritten
) such that:

e

&5 [=3-1, &6=p-30°

L 1)

.‘ Line Currents Phase Currents

os I,= T,=-L 54300

‘.‘. 1, =126 “= 5 +30

% T, =1/5-120° 7=l s5-90°

s I =1/5-240° 1

o0 c T 10T 7,=1L s5-210°

“‘ ca \/3




Complex Power in A-connected Loads

In the case of a 3®, A-connected load, the complex power
consumed by each of the load’s three individual phases are:

~ ~ ~ ~

Sb:IZb'TaZ Sb :I/b ']bc Sca:I/ca'Ica

a

C

C

Complex Power in A-connected Loads

If the system is balanced, with voltages and currents defined as:

() - ~ I
.‘. =\/§~V4¢+30° I,=—=/5+30°
.‘ ab \E

~ ~ I
.:‘. be :\/5V4¢_900 ]bczﬁ45_900
o J =3-VLp-210° 7. =L 52100
[ ) 3

L) then:

Su Zb@1=[ﬁ-V4¢+30°]-[ 4—(5+30°)} V- ILp-5

{ )
@,

Spe = Ve INbi = [\E'VZ¢_9OO]'[
|

4—(5—900)} =V-ILp-5

e
<

S

=, T =[N3 vzg-210° 4—(5—210°)} =V I/$-5

5

1
ey el




Complex Power in A-connected Loads

If the system is balanced, with voltages and currents defined as:

~ ~ .
=3V L$+30° Iab=ﬁ4§+30
~ o ~ I o
=3 VZL$p-90 Ibc=ﬁ4§—90
V., =\3Vs$-210° I, L 5 2100
J3
then:
Sap =Vap Loy =V - 1£¢=0 all three phases will
S, =V, I, =V-I/$-6 consume equal
S~ complex power.
S, =V, T =v.1/4-5 plex P

{
zZZ8
=g

Complex Power in A-connected Loads

Ca
8

Thus, the total complex power consumed by a balanced, 30,
A-connected load will be equal to 3x the power consumed by
any individual phase:

SS(D = Sab + Sbc + Sca = 3 .S1<1>

allowing the total complex power to be

e
.“ expressed in terms of a single phase:
@ o~
¢ S=3V, 15 =3V 1$-5
> %
o9 where: 7, =\3-V/¢+30°
(0
o 7, =L s5+30°
ot Iy =7 45+30




3® Delta-connected Load Example

Given a 480V, 3@, Y-connected, positive-sequence, balanced
source that is supplying a A-connected, balanced load with
individual phase impedances

Z,=80+j60Q,

Zan Za
Za

3® Delta-connected Load Example

Given a 480V, 3@, Y-connected, positive-sequence, balanced
source that is supplying a A-connected, balanced load with
individual phase impedances

Z,=80+j60 Q,

Determine:
a) all of the phase and line voltages in the system,

b) all of the phase and line currents in the system, and

¢) the total complex power provided by the source to the A-connected load.

Note — choose the angle of the phase voltage I7a to be the 0° reference
angle for the system.
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3® Delta-connected Load Example

Phase Voltages Line Voltages
J =277/0° V., =480 +30°
V, =277£-120° V,. =480/ —-90°
V. =2774-240° V., =480/ -210°

Since the source defined in this example is the same as that in the
Y-connected load example, the phase and line voltages shown above
are provided without the logic required to obtain those values.

3® Delta-connected Load Example

Phase Voltages Line Voltages

..‘. y =277£0° =480/ +30°
b o . =277/ —120° 7, =480£-90°

:‘. V. =277/-240° V., =4804£-210°
()

) : .

..“ The phase and line voltages are shown in the figure below:
@

[ 1)
O
g A
‘.‘. Va ZAZAZA

[ ) —r
‘.‘. Ve

@




3® Delta-connected Load Example

Line Voltages

V., =480£+30°
V,. =480 -90°
V., =480/-210°

Note that although the phase and line voltages both exist at the
Y-connected source, only the line voltages appear at the A-connected
load due to the absence of a neutral point.

3® Delta-connected Load Example

Line Voltages

V., =4802+30°
V. =480£—-90°
V., =480/-210°

By applying Ohm’s Law to the load connected across
nodes a and b, the phase current can be determined:

~

~ 7, 480/30°

=48/£-6.9°

“Z, 80+ 60

from which the remaining phase currents can then be solved.
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3® Delta-connected Load Example

Line Voltages
4802 +30°

Van

Vi
V., =480/-210°

480£-90°

~ 1

Given: l,=48/4-69° = E:ALS 0+30°=-6.9°
The remaining phase currents can be determined from:
Balanced Relationships Phase Currents
Zﬁ,zﬁzmsoo T,=48/-69°
7&:%45_900 N f’ =4.8/-126.9°
1}:%45—210° I,=48/-2469

\ 4 a 4
90,0808 3-8

3® Delta-connected Load Example

Line Voltages Phase Currents
V, =480£+30° I,=48/-69°
V., =480£-90° I, =4.8/-126.9°
V., =480/-210° I, =48/-246.9°
Additionally: \[E =48 6+30°=-6.9° > =831 &6=-36.9°
The line currents can be determined from:
Balanced Relationships Line Currents
I,=1/6 I,=831/-36.9°

I,=125-120° 3  I,=831/-156.9°
I =1/6-240° I,=831/-276.9°
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3® Delta-connected Load Example

Phase Voltages Line Voltages Phase Currents Line Currents
V. =277/0° V,=480/+30° I,=48/-69° I =831/-369°

V,=277/-120° V, =480£-90° I, =48/-126.9° I, =8.31/-156.9°

V.=277/-240° V., =480£-210° 1,6=48/-246.9° 1 =831/-276.9°

The voltages and currents are shown in the figure below:
Ta

3® Delta-connected Load Example

Phase Voltages Line Voltages Phase Currents Line Currents
V. =277£0° V,=480£+30° 1,=48/-69° I ,=831£-369°

V,=277/-120° V, =480£-90° I, =4.8/-126.9° 1, =831/-156.9°
V.=277/-240° V_ =480£-210° 1,6=48/-246.9° 1 =831/-276.9°

Now that all of the voltages and currents have been specified in the
system, the next step is to solve for the total complex power that
will be provided by the 3® source to the 3® load.
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3® Delta-connected Load Example

Phase Voltages Line Voltages Phase Currents Line Currents
V. =277/£0° V., =4802+30° =48/-69° I,=831£/-36.9°

Tab
V. =277/-120° —4804-90° I, =48/-1269° I, =831/-156.9°
I,

i;};L'
V. =48/-2469° T =831/-276.9°

V. =277/-240° =480/ -210°

Since the total complex power consumed by a balanced A-connected
load is equal to 3x the complex power consumed by each individual
phase of the load:

Sy =3V, T =3.[480230°]-[4.82—-(-6.9%)]
=3.[1843.2+ j1382.4]=5529.6 + j4147.2

3® Delta-connected Load Example

Phase Voltages Line Voltages Phase Currents Line Currents
V. =277£0° V, =480£+30° =48/-69° I, =831£-36.9°

INab
V,=277/-120° V, =480£-90° I, =4.8/-126.9° 1, =831/-156.9°
V.=277/-240° V, =480/-210° T,

=4.84-246.9° TE =8.31£-276.9°

If desired, the complex power result:

S, =5529.6+ j4147.2

can be broken down into its real and reactive power components:

P, =5529.6 Watts O, =4147.2Vars
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Y < A Load Comparison

Phase Voltages Line Voltages
V. =277£0° V., =480£+30°
V, =277/-120° V,, =480/ -90°
=277/ —240° V., =480/ -210°

Based on the results of the previous examples:

If a balanced 3® source is supplying both a Y-connected load and a
A-connected load, each having the same per-phase impedances:

Z,=2Zy

then the A-connected load will consume 3x more power than the
Y-connected load.

Y < A Load Comparison

Phase Voltages Line Voltages
V. =277.£0° V., =480/ +30°
V, =277/-120° v, =480/-90°
V. =277/-240° V., =480/£-210°

It can also be proven that:

If a balanced 3® source is supplying both a Y-connected load and a
A-connected load, but the per-phase A-impedances are 3x larger
than the per-phase Y-impedances:

then the A-connected load and the Y-connected load will consume the
same amount of power.
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