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ECET 2111
Circuits II

Introduction to Filters

Decibel – a unit defined by a logarithmic expression that is 
commonly used to define the levels of a variety of 
parameters including voltage gain, field strength, 
energy, and sound pressure.

Logarithm – a quantity representing the power to which a fixed 
number (the base) must be raised to produce a 
given number.

Given:

Then:

Decibels & Logarithms

xBA 

Ax Blog
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Commonly used logarithms include:

Notes:

Logarithms

xA 10Ax 10log

xeA Ax elog

AAe 10log303.2log 

AAe lnlog 

For example:
if then

Logarithms
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Logarithms are commonly utilized in order to:

 Plot the response of a system across a wide range of values 
that may be impractical if using a linear scale

 Compare levels of voltage or power without having to deal 
with very large or very small numbers that might otherwise 
obscure important details contained within the data

 Predict the operation of a system that has a non-linear 
response to stimuli in a logarithmic manner

 Determine the response of a cascaded or compound system 
provided that the gain of each stage is known in a 
logarithmic manner.

Logarithms

The following plot utilizes a logarithmic scale for its x-axis:

Semi-Log Plot

Note that when 
using a log‐scale, 
the axis cannot 
begin at zero.
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A semi-log plot is often utilized to display the frequency response 
of an electrical system. 

Logarithmic Scales

To find the specific value of a point plotted on a log-scale:

Measure the distance, d1, between the plotted point and the 
closest major division to the left of the plotted point.

Measure the distance, d2, between the closest major division 
to the left of the plotted point and the next major division.

Logarithmic Scales

p
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1010 d

d

xp 
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To find the specific value of a point plotted on a log-scale:

Measure the distance, d1, between the plotted point and the 
closest major division to the left of the plotted point.

Measure the distance, d2, between the closest major division 
to the left of the plotted point and the next major division.

Logarithmic Scales
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 The Log of one (1) is always equal to zero (0).

 If (A>1) then the Log of A is positive.

 If (A<1) then the Log of A is negative.

Additional properties include:

Properties of Logarithms

01log01log01log10  ne

3.21.0log3.05.0log10  e

61.15log3.32000log10  e
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Power Gain

Bel (B) – a base unit defined as a logarithmic ratio of powers:

Decibel (dB) – a logarithmic ratio of powers that is commonly 
utilized in order to define the gain (increase) in 
power P2 compared to power P1.

Bels & Decibels
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 If P2 = P1, then the decibel gain is zero.

 If P2 > P1, then the decibel gain is positive.

 If P2 < P1, then the decibel gain is negative.

Properties of Decibels
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 If P2 = 2n P1, then the decibel gain is n (+3dB).

 If P2 = ½n P1, then the decibel gain is n (–3dB).

 If P2 = 10n P1, then the decibel gain is n (+10dB).

 If P2 = 10-n P1, then the decibel gain is n (–10dB)

Properties of Decibels
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dBm – a specific value of power, relating to a power P2 (mW), but 
expressed in terms of the decibel gain of P2 compared to a 
reference power of 1mW.

For example – convert a power of +6dBm to a mW value:

dBm

mW1
log10 2

10

P
dBm 

mW1
log106 2

10

P
dBm 

mW44mW110mW1 10

6

2 


P
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Typical Sound Levels and their Decibel Values

Decibel Example

μbar0002.0
log10 10

P
dBs 

Voltage Gain (AV) – a ratio of voltages that is commonly utilized 
in order to define the gain (increase) in 
voltage VOut compared to voltage VIn.

For example – is an amplifier has a voltage gain AV = 8, then:

Voltage Gain

In

Out
V V

V
A 

VIn VOutAV1 = 8 InInVOut VVAV  8
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dBv – a logarithmic ratio of voltages, expressed in terms of 
decibels, that is commonly utilized in order to define the 
gain in the power supplied to a resistive load R by 
voltage V2 compared to the power supplied to the same 
resistive load R by voltage V1.

dBv
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For example:



10

A filter is a combination of elements that is designed to select or 
reject a band of frequencies.

Passive Filters are filters composed of series and/or parallel 
combinations of passive elements (R, L, and C).

Active Filters are filters that employ active electronic devices, 
such as transistors or operational amplifiers, in combination 
with passive elements.

Filters

There are four primary categories of filters:

Low-Pass Filters

High-Pass Filters

Band-Pass Filters

Stop-Band Filters

Filters
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The following combination of elements can be utilized to create a 
R-C Low-Pass Filter:

R-C Low-Pass Filter

C

C
inout jXR

jX
VV






C

C

in

out
V jXR

jX

V

V
A






The R-C Low-Pass Filter has the frequency response shown to 
the right:

R-C Low-Pass Filter
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The cutoff frequency for the filter is defined to be the frequency 
at which the output voltage is 0.707x its peak value.

R-C Low-Pass Filter

CR
fc 


2

1

At low frequencies, the capacitor acts like an open-circuit:

while at high frequencies, the capacitor acts like a short-circuit:

R-C Low-Pass Filter

inout VV 

0outV
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The following plots show the voltage gain and phase response 
of the low-pass filter:

R-C Low-Pass Filter

Determine the voltage gain and phase response of the following 
low-pass filter.

The OC output voltage and 
voltage gain are defined by:

and the cutoff frequency is:

R-C Low-Pass Filter Example

Vin

+

C = 15nF

R = 10k

Vout
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1015100002
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
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
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The voltage gain and phase response plots for the circuit are:

R-C Low-Pass Filter Example

Vin

+

C = 15nF

R = 10k

Vout

Hz1061
2

1





CR
fc 

Determine the response of the low-pass filter if a 10k load is 
added to the circuit:

The OC output voltage and 
voltage gain are defined by:

where:

RLoad =
10kVin

+

C = 15nF

R = 10k

Vout

R-C Low-Pass Filter Example

p

p
inout ZR

Z
VV




p

p

in

out
V ZR

Z

V

V
A




LoadCp RjXZ ||
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The voltage gain for the circuit with the 10k load is:

Notice that the cutoff frequency 
has increased from 1061Hz
when open-circuited to 2130Hz
with the 10kHz load.

R-C Low-Pass Filter Example

Hz2130

Hz1061

)Loadk10(

)(





c

OCc

f

f

RLoad =
10kVin

+

C = 15nF

R = 10k

Vout

If the load resistance is increased to 100k, the voltage gain for 
the circuit is:

Notice that the cutoff frequency 
has decreased to 1170Hz.

If Rload >> R, the response of the 
filter will resemble the filter’s 
OC response. 

R-C Low-Pass Filter Example

RLoad =
10kVin

+

C = 15nF

R = 10k

Vout

Hz1170

Hz2130

Hz1061

)Loadk100(

)Loadk10(
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
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The following combination of elements can be utilized to create a 
R-C High-Pass Filter:

R-C High-Pass Filter

C
inout jXR

R
VV




Cin

out
V jXR

R

V

V
A




The R-C High-Pass Filter has the frequency response shown to 
the right, the cutoff frequency for which is also defined to be the 
frequency at which the output voltage is 0.707x its peak value:

R-C High-Pass Filter

CR
fc 


2

1
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inout VV 

At low frequencies, the capacitor acts like an open-circuit:

while at high frequencies, the capacitor acts like a short-circuit:

R-C High-Pass Filter

0outV

The following plots show the voltage gain and phase response 
of the high-pass filter:

R-C High-Pass Filter
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The following combination of elements can be utilized to create a 
series-resonant Band-Pass Filter:

Band-Pass Filter

CLL
inout jXjXRR

R
VV




CLLin

out
V jXjXRR

R

V

V
A




CL
fs 


2

1

A Band-Pass Filter could also be created by cascading a High-Pass 
Filter and a Low-Pass Filter:

Band-Pass Filter
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Note that, when cascading a High-Pass Filter and a Low-Pass Filter 
to create a Band-Pass Filter, the actual cutoff frequencies will 
vary from the individual cutoff frequencies due to the interaction 
between the cascaded filters.

Band-Pass Filter Example

kHz
CR

f

kHz
CR

f
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HPc
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actuallc

1190

88

)(

)(





A series-resonant Band-Stop Filter can be created by reversing 
the positions of the elements used in the Band-Pass Filter:

Band-Stop Filter

CLL

CLL
inout jXjXRR

jXjXR
VV





CLL

CLL

in

out
V jXjXRR

jXjXR

V

V
A






CL
fs 


2

1
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A Band-Stop Filter could also be created by paralleling a High-Pass 
Filter and a Low-Pass Filter:

Band-Stop Filter

Bode Plots are the curves obtained for the magnitude and phase 
response (versus frequency) of a system.

Idealized Bode Plots utilize straight-line segments to efficiently 
estimate the frequency response of a system.

There is a quick technique for sketching the frequency response 
of a system on a decibel scale that provides a good method for 
comparing the expected decibel levels at different frequencies.

Bode Plots
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Lets look back at the R-C High-Pass Filter.

The formula for the voltage gain 
can be rewritten as:

R-C High-Pass Filter

CR
fc 


2

1

CRf
j

R

X
j

jXR

R

V

V
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C

Cin
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
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


2
1

1

1

1

1

Lets look back at the R-C High-Pass Filter.

Additionally, The formula for the 
voltage gain can be rewritten as:

R-C High-Pass Filter
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Given the voltage gain for a R-C High-Pass Filter:

the magnitude of the voltage gain can be expressed as: 

R-C High-Pass Filter

f
f
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V
A
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


1

1
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If the magnitude of the voltage gain is expressed in decibels:

the result will be: 

R-C High-Pass Filter
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Additionally, the decibel voltage gain can be rewritten as:

R-C High-Pass Filter
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Given the decibel voltage gain function:

when f << fc ,

and:

R-C High-Pass Filter
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Thus, given the decibel voltage gain function ( f << fc ):

if then
f = fc 20log10(1) = 0dB

f = 0.5fc 20log10(0.5) = -6dB
f = 0.25fc 20log10(0.25) = -12dB
f = 0.1fc 20log10(0.1) = -20d

Bode Plots
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ffdBV f

f
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log20

Note that, given the decibel voltage gain function ( f << fc ):

For every decrease in the frequency by a factor of 0.5 (one octave), 
there will be a 6dB decrease in the gain, and

For every decrease in the frequency by a factor of 0.1 (one decade), 
there will be a 20dB decrease in the gain.

Thus, an Idealized Bode Plot can be drawn for the gain function 
because the dB change per octave or decade is constant.

Bode Plots
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The Bode Plot for the decibel voltage gain function is:

Bode Plots
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Additionally, the phase response may be drawn as:

Bode Plots
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R-C Low-Pass Filter
Given an R-C Low-Pass Filter, the decibel voltage gain ( f >> fc ) 

can be written as:

resulting in the following Bode Plot:

(assuming fc = 1kHz)












c

ffdBV f

f
A

c
10)(

log20

f
f

jV

V
A

cin

out
V




1

1

CR
fc 


2

1

Sketching Bode Plots
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Given:

HPF      +        HPF        +         LPF       +        LPF

Sketching Bode Plots Example
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Given:

HPF      +        HPF        +         LPF       +        LPF

Sketching Bode Plots Example
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3-Way Crossover w/ 6dB per Octave

woofer (low frequencies)

mid-range (middle frequencies)

tweeter (high frequencies)

Idealized Bode Plots for Various Functions


