

ECET 2111

Circuits II

Introduction to Filters

Logarithms

Commonly used logarithms include:

$$
x = \log_{10} A \qquad A = 10^x
$$

 $x = \log_e A$ $A = e^x$

Notes: $\log_e A = 2.303 \cdot \log_{10} A$

 $log_e A \equiv ln A$

Logarithmic Scales

To find the specific value of a point plotted on a log-scale:

- \bullet Measure the distance, d_1 , between the plotted point and the closest major division to the left of the plotted point.
- \bullet Measure the distance, d_2 , between the closest major division to the left of the plotted point and the next major division.

Properties of Logarithms

• The Log of one (1) is always equal to zero (0).

 $\log_{10} 1 = 0$ $\log_e 1 = 0$ $\log_e 1 = 0$

If $(A>1)$ then the Log of A is positive.

 $\log_{10} 2000 = 3.3$ $\log_e 5 = 1.61$

If $(A<1)$ then the Log of A is negative.

 $\log_{10} 0.5 = -0.3$ $\log_e 0.1 = -2.3$

Additional properties include:

 $\log_n a \cdot b = \log_n a + \log_n b$ $\log_n \frac{a}{b} = \log_n a - \log_n b$ $\log_n \frac{a}{b} = \log_n a - \log_n b$ $\log_n a^b = b \cdot \log_n a$

Bels & Decibels

Power Gain

Bel (B) – a base unit defined as a logarithmic ratio of powers:

$$
B = \log_{10} \frac{P_2}{P_1}
$$

Decibel (dB) – a logarithmic ratio of powers that is commonly utilized in order to define the **gain** (increase) in power P_2 compared to power P_1 .

$$
dB = 10 \cdot B = 10 \cdot \log_{10} \frac{P_2}{P_1}
$$

Properties of Decibels

If $P_2 = P_1$, then the decibel **gain is zero**.

$$
10 \cdot \log_{10} \frac{5mW}{5mW} = 10 \cdot \log_{10} 1 = 10 \cdot 0 = 0 \text{ dB}
$$

If $P_2 > P_1$, then the decibel **gain is positive**.

$$
10 \cdot \log_{10} \frac{20mW}{5mW} = 10 \cdot \log_{10} 4 = 10 \cdot 0.6 = +6 \text{ dB}
$$

If $P_2 < P_1$, then the decibel **gain is negative**.

 $10 \cdot \log_{10} 0.01 = 10 \cdot (-2) = -20 \text{ dB}$ $10 \cdot \log_{10} \frac{1mW}{100mW} = 10 \cdot \log_{10} 0.01 = 10 \cdot (-2) = -$

dBm

 $\underline{\textbf{dBm}}$ – a specific value of power, relating to a power P_2 (mW), but expressed in terms of the decibel gain of P_2 compared to a reference power of 1mW.

$$
dBm = 10 \cdot \log_{10} \frac{P_2}{1 \text{ mW}}
$$

For example – convert a power of **+6dBm** to a **mW** value:

+ 6
$$
dBm = 10 \cdot \log_{10} \frac{P_2}{1 \text{ mW}}
$$

 $P_2 = 1 \text{ mW} \cdot 10^{\frac{16}{10}} = 1 \text{ mW} \cdot 4 = 4 \text{ mW}$

Voltage Gain (A_V) – a ratio of voltages that is commonly utilized in order to define the **gain** (increase) in voltage V_{Out} compared to voltage V_{In} . For example – is an amplifier has a voltage gain $A_V = 8$, then: **Voltage Gain** *In Out* $V = V$ $A_V = \frac{V}{I}$ $\overline{A_{\text{VI}} = 8}$ \longrightarrow $\overline{V}_{\text{Out}}$ $V_{\text{Out}} = A_V \cdot V_{\text{In}} = 8 \cdot V_{\text{In}}$

8

dBv

dBv – a logarithmic ratio of voltages, expressed in terms of decibels, that is commonly utilized in order to define the **gain** in the power supplied to a resistive load *R* by voltage V_2 compared to the power supplied to the same resistive load R by voltage V_I .

$$
dB = 10 \cdot \log_{10} \frac{P_2}{P_1} = 10 \cdot \log_{10} \frac{\frac{V_2^2}{R}}{\frac{V_1^2}{R}} = 10 \cdot \log_{10} \frac{V_2^2}{V_1^2} = 10 \cdot \log_{10} \left(\frac{V_2}{V_1}\right)^2 = 20 \cdot \log_{10} \frac{V_2}{V_1}
$$

$$
dB_V = 20 \cdot \log_{10} \frac{V_2}{V_1}
$$

Filters

A **filter** is a combination of elements that is designed to select or reject a band of frequencies.

Passive Filters are filters composed of series and/or parallel combinations of passive elements (R, L, and C).

Active Filters are filters that employ active electronic devices, such as transistors or operational amplifiers, in combination with passive elements.

R-C High-Pass Filter

Given the voltage gain for a **R-C High-Pass Filter**:

$$
A_V = \frac{V_{out}}{V_{in}} = \frac{1}{1 - j\frac{f_c}{f}}
$$

the **magnitude** of the voltage gain can be expressed as:

$$
|A_V| = \frac{1}{\sqrt{1 + \left(\frac{f_c}{f}\right)^2}} = \frac{1}{\left(1 + \left(\frac{f_c}{f}\right)^2\right)^{\frac{1}{2}}}
$$

R-C High-Pass Filter

If the **magnitude** of the voltage gain is expressed in **decibels**:

$$
\left|A_V\right|_{dB} = 20\log_{10}\left|A_V\right|
$$

the result will be:

$$
A_V\Big|_{dB} = 20 \log_{10} \frac{1}{\left(1 + \left(\frac{f_c}{f}\right)^2\right)^{\frac{1}{2}}}
$$

= 20 log₁₀ 1 - 20 log₁₀ $\left(1 + \left(\frac{f_c}{f}\right)^2\right)^{\frac{1}{2}}$
= 0 - 20 log₁₀ $\left(1 + \left(\frac{f_c}{f}\right)^2\right)^{\frac{1}{2}}$

R-C High-Pass Filter

Additionally, the **decibel voltage gain** can be rewritten as:

$$
A_V\big|_{dB} = -20 \log_{10} \left(1 + \left(\frac{f_c}{f}\right)^2\right)^{\frac{1}{2}}
$$

= $-\frac{1}{2} \cdot 20 \log_{10} \left(1 + \left(\frac{f_c}{f}\right)^2\right)$
= $-10 \log_{10} \left(1 + \left(\frac{f_c}{f}\right)^2\right)$

R-C High-Pass Filter

Given the **decibel voltage gain** function:

$$
|A_V|_{dB} = -10 \log_{10} \left(1 + \left(\frac{f_c}{f} \right)^2 \right)
$$

when $f \ll f_c$,

$$
1 + \left(\frac{f_c}{f}\right)^2 \cong \left(\frac{f_c}{f}\right)^2
$$

and:

$$
|A_V|_{dB(f << f_c)} = -10 \log_{10} \left(\frac{f_c}{f}\right)^2 = -20 \log_{10} \left(\frac{f_c}{f}\right) = +20 \log_{10} \left(\frac{f}{f_c}\right)
$$

Bode Plots

Note that, given the **decibel voltage gain** function $(f \ll f_c)$:

$$
|A_V|_{dB(f<
$$

For every decrease in the frequency by a factor of 0.5 (one octave), there will be a 6dB decrease in the gain, and

For every decrease in the frequency by a factor of 0.1 (one decade), there will be a 20dB decrease in the gain.

Thus, an **Idealized Bode Plot** can be drawn for the gain function because the dB change per octave or decade is constant.

