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The voltage potential of an AC source may be 
defined as: 

where: is the peak value of the voltage,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the voltage waveform.
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Steady-State AC Voltage Sources

Similarly, the current produced by the AC source 
may be defined as: 

where: is the peak value of the current,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the current waveform.
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In electric circuits, power can be defined as the rate
at which electric energy is either produced or 
consumed by an element within the circuit.

Although it is actually the electric energy that is 
either being produced or consumed by the circuit 
elements, power is also casually referred to as being 
produced or consumed within an electric circuit.

Power in AC Circuits

v(t)
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+

Power may be calculated in terms of the voltage and 
current waveforms associated with a specific circuit 
element by:

(Watts)

where: provides the instantaneous rate that an 
element either produces or consumes 
electric energy at any time t.
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Note that the expression:

(Watts)

defines the power “produced” by an element when 
the current is defined in the same direction as the 
voltage-rise across the element.

But, if the current is defined in the opposite direction
as the voltage-rise across an element, then p(t)
defines the power “consumed” by that element. 
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Power in AC Circuits

v(t)

i(t)

In the case of an AC source where:

the general expression for power produced by the 
source is:      
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The power expression:

is actually quite complex.

To better understand the true nature of the power 
expression, it may by useful to first consider the 
case where the voltage source is applied to a 
purely resistive load.
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Power from an AC Source

Given a resistor, whose voltage is:

the resultant resistor current will be:
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Thus, for a resistive load:

Note that, the voltage and current magnitudes follow 
the Ohm’s Law relationship:

,

and that the sinusoidal expression remains unchanged.
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AC Sources and Resistive Loads

Thus, for a resistive load:

Based on this result, it can be seen that both the 
frequency and the phase angle of the resistor 
current are equal to those of the applied voltage…

For this reason, AC circuits containing resistive loads      
are often analyzed in terms of the magnitudes of the 

voltages and currents.
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If an AC source is connected to a resistive load, 
such that:

then the power consumed by the resistor will be:      
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The figure below shows the power waveform:

plotted along with the resistor’s voltage and 
current waveforms:
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As shown, power supplied to the resistor is 
always non-negative, which is expected since a 
resistor can only consume electric power.
Note – Since p(t) is the power “consumed” by the 

resistor, a negative value would imply that 
power is actually being “produced” by the 
resistor, a result which can not occur.

)(tv

)(ti

AC Power and Resistors
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Additionally, it can be seen that the power 
waveform varies periodically, but with a 
frequency that is 2x larger than that of the 
applied voltage or the resultant current.
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The peak magnitude of the AC power waveform is:

This should not be confused with the constant 
power provided to a resistor by a DC source.
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To better understand the resistor’s AC power 
waveform, it is useful to rewrite the power 
expression:

(by utilizing the trig-identity sin2x = ½·[1 – cos2x]):
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Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The first term is a constant that relates to the 
average value of the power that is consumed 
by the resistor.

)2cos(
22

)( t
IVIV

tp peakpeakpeakpeak

R 





 

AC Power and Resistors

)(tpR
average

v(t)

+

i(t)

RvR(t)

iR(t)

Looking at the resultant AC power waveform:

It can be seen that the waveform has two terms:

• The second term is a sinusoidal term that 
varies at 2x the source frequency and provides 
the fluctuation in the power waveform.
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In AC systems, it is typically the average value of 
the power that is desired.

This average power value is called Real Power.

The real power consumed by a resistive load is:
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Note that the real power consumed by the resistor 
is ½ that of the peak power value:  

(Watts)

This result is expected since the power waveform 
fluctuates evenly between zero and its peak value.

Yet, this result is potentially confusing if compared 
to power supplied by a DC source to a resistor: 
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Thus, in terms of the average power supplied to a 
resistor, an AC source is only ½ as effective as a 
DC source whose magnitude is equal to the peak 
value of the AC source.
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Since the average AC power is proportional to the 
square of the source’s peak voltage:

if the peak value of the AC voltage is increased 
such that it is       times larger than the DC voltage:

then the AC source will supply the same average 
power to the resistor as the DC source.
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Based on this result, an effective voltage can be 
defined for a sinusoidally-varying AC source, 
such that:

Note that the effective value of the AC source is 
equal to the RMS (root-mean-squared) value of 
the source voltage, as defined by the function:
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For example:

A 100Vpeak AC source has an effective voltage of:

since it delivers an average power of 50W to a 
100 resistor:

which is equal to that from a 70.7V DC source:
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It also turns out that the effective voltage for any 
non-sinusoidal, periodic AC voltage waveform, 
v(t), can be determined by calculating the 
waveform’s RMS value:

Despite this fact, we will limit our discussion to 
sinusoidally-varying voltages.
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The voltage waveform may be expressed in terms 
of its RMS voltage magnitude: 

where: is the RMS magnitude of the AC voltage.
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Similarly, the current waveform may also be 
expressed in terms of its RMS current magnitude: 

where: is the RMS magnitude of the AC current.
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When the voltages and currents are expressed in 
terms of their RMS magnitudes:

the power delivered to a resistor is:

with an average (Real Power) value of:
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DCDCDC
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The result:

is similar to the DC formula for power:

which provides the motivation for expressing the 
AC waveforms in terms of their RMS (effective) 
magnitudes instead of their peak magnitudes.
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As previously stated, the general expression for the 
power produced by an AC source is:

where:      
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If the voltages & currents are expressed in terms of their 
RMS magnitudes, the power expression becomes:

which may be modified using several trigonometric 
identities into the following form:
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The modified power expression is often simplified by 
defining a new variable, θ, where:

and substituting it into the equation, resulting in the 
general power expression:
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The angle θ, is defined by the difference between the 
phase angles of the voltage and current,

such that:

The angle θ is often referred to as the power angle:
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This general expression defines the instantaneous 
power produced by an AC source.

Likewise, if the source is connected across a load 
that may have resistive, capacitive, and/or 
inductive components, then the solution also 
defines the instantaneous power consumed by 
the AC supplied load.
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The general expression for AC power has three terms:

To help clarify the relevance of each term, let’s first 
look at the power waveforms that result from the 
source being used to supply either a purely resistive, 
purely inductive, or purely capacitive load.

v(t)

i(t)

+

)2sin()sin(           

)2cos()cos(            

)cos()(

tIV

tIV

IVtp













AC Power – General Case

If an AC source is connected to a resistive load,

then the resistor current will be:

and the power consumed by the resistor will be:      
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The resultant power waveform has two terms:

 the first of which is a constant that provides 
the average power supplied to the resistor, 
which is defined to be Real Power, PR , and

 the second of which is a purely sinusoidal
term that has a zero average value and varies 
at 2x the frequency of the source voltage.
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If the AC source is connected to an inductive load,

then the inductor current will be:

and the power consumed by the inductor will be:      
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The resultant power waveform has only one term:

which is a purely sinusoidal term that has a   
zero average value and varies at twice (2x) the 
frequency of the source voltage.

Since the power waveform has a zero-average 
value, the inductor consumes zero real power:

but power is flowing into and out of the inductor.
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If the AC source is connected to an capacitor load,

then the capacitor current will be:

and the power consumed by the capacitor will 
be:      
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The resultant power waveform has only one term:

which is a purely sinusoidal term that has a    
zero average value and varies at twice (2x) the 
frequency of the source voltage.

Since the power waveform has a zero-average 
value, the capacitor consumes zero real power:

but power is flowing into and out of the capacitor.
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AC Power and Capacitors
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Although the (average) real power consumed by 

both inductors and capacitors is zero, there 
is power flowing in and out of these elements 
when supplied by an AC source:

The term Reactive Power is used to characterize 
the amount of energy that is being temporarily 
stored and then released by a “reactive load” 
(capacitive or inductive).

AC Power and Reactive Loads
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Reactive Power (Q ) is defined as the magnitude 
of the power that is flowing into and out of a 
reactive load when supplied by an AC source.

Thus, given:

the reactive power for the inductive and 
capacitive loads can be defined as:
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Reactive Power is given the unit of “Vars”, 
which stands for:

“Volt-Amps-Reactive”.

Note that the reactive power for an inductor is positive
while the reactive power for a capacitor is negative.

Thus, it is often stated that an inductor “consumes” 
reactive power while a capacitor “produces” reactive 
power.
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The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The first term is a constant that provides the 
average or Real Power that is consumed by the 
resistive portion of the load:
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AC Power – General Case

The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The second term is a sinusoidal term that varies 
at 2x the source frequency and provides the 
fluctuation in the power being supplied to the 
resistive portion of the load.
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The previous results can be used to define the 
relevance of the three terms that appear in the 
general AC power expression:

The third term is also purely sinusoidal, the 
magnitude of which provides the Reactive Power
“consumed” by the reactive portion of the load.

)2sin()sin(           

)2cos()cos(            

)cos()(

tIV

tIV

IVtp












+

v(t)

i(t)

AC Power – General Case

Vars   IVQ )sin(

Z = R + jX

General
R,L,C
Load

Note that, if the load has both a resistive and a 
capacitive or an inductive component, then the 
power angle θ will fall somewhere in the range:

-90°≤ θ ≤+90°

resulting in the existence of all three terms in 
the general power expression.

Thus, there will be Real and Reactive Powers 
flowing into the load, as defined by: 

+

v(t)

i(t)

)sin(

)cos(









IVQ

IVP

General
R,L,C
Load

AC Power in Combination Circuits
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A phasor is a representation of a sinusoidal waveform whose 
magnitude, phase and frequency are constant.

Phasors reduce the dependency of these parameters to three 
independent factors, thus allowing for the simplification of 
certain types of calculations.

It turns out that, for steady-state AC circuits, the time dependency 
of the sine-waves can be factored out, reducing the linear 
differential equations required for their solution to a simpler set 
of algebraic equations.

Phasor Representation of Sine Waves

The sinusoidal voltage:

may be defined in the form of a phasor voltage:

where it is expressed as a complex number in “polar” form, 
with RMS magnitude V and phase angle  .

(Note – although phasor value may be expressed in terms of “peak” 
magnitudes, RMS voltage magnitudes are typically used in 
cases where “power” is of primary interest, and thus will be 
utilized in this course unless specifically stated otherwise.) 

)sin(2)(   tVtv

  VVeV j~

Phasors and AC Voltages
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The phasor voltage defined above is shown both as a complex 
exponential and as a complex number in polar form .

Phasors are typically presented in most “circuits” textbooks as complex 
numbers expressed in “polar” form, but some calculators do not accept this 
format, thus requiring the use of complex exponentials.

)sin(2)(   tVtv

  VVeV j~

jVe V

Phasors and AC Voltages

Note that although                 , mathematically the expression       
is technically only valid if the angle  is defined in radians.

In practice,  is often expressed in degrees, especially when 
relating to phasors.  Some calculators will accept complex 
exponentials with their angles expressed either in radians or 
in degrees; other calculators require the angle of the complex 
exponential to be entered in radians.

je  1je

)sin(2)(   tVtv

  VVeV j~

Phasors and AC Voltages
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The sinusoidal current:

may also be defined in the form of a phasor current:

where it is expressed as a complex number in “polar” form, with 
RMS magnitude I and phase angle  .

(Note – RMS current magnitudes will be also utilized in this course 
unless specifically stated otherwise.) 

)sin(2)(   tIti

  IIeI j~

Phasors and AC Currents

An impedance is a general expression that is used 
to define the ratio of the phasor value of the 
voltage across a load compared to the phasor 
value of the current flowing through the load.

Based on this definition, the impedance Z can be 
defined in terms of the voltage and current as: 
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V
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~
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+
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~

I
~
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~

V
~



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


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I

V

I

V
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V
Z  )(~

~

Impedance
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Since Ohm’s Law holds true for resistors when 
supplied with any voltage source (including 
those expressed as phasors), the impedance of a 
resistor is equal to it’s resistance:

which is a purely real number.

R
I

V
Z

R

R
R  ~

~

+
RVR

~

IR
~

V
~

I
~

Impedance of a Resistor

Given an inductor with voltage vL(t), the current 
flowing through the inductor can be defined in 
terms of the inductor’s voltage and inductance:

When expressed as phasors, the inductor’s voltage 
and current are:

VVL

~

)sin(2)(   tVtvL

)90sin(2)( 


 


t
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V
tiL



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~ 

 L

V
IL

+
LVL

~

IL
~

V
~

I
~

Impedance of an Inductor
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Based on the inductor’s phasor voltage and current:

the inductor’s impedance can be defined as:

which is typically expressed as a purely imaginary 
complex number in rectangular form:  
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L
L 






  LjLjLZL   090

Impedance of an Inductor

Note that the 
impedance of 
an inductor 
is a positive, 

imaginary number

Given a capacitor with voltage vC(t), the current 
flowing through the capacitor can be defined in 
terms of the capacitor’s voltage and capacitance:

When expressed as phasors, the capacitor’s voltage 
and current are:

VVC

~

)sin(2)(   tVtvC

)90sin(2)(   tCVtiC
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~  CVIC
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~

V
~

I
~

Impedance of a Capacitor
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Based on the capacitor’s phasor voltage and current:

the capacitor’s impedance can be defined as : 

which is typically expressed as a purely imaginary 
complex number in rectangular form:
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Note that the 
impedance of 
a capacitor             
is a positive, 

imaginary number

Reactance defines the manner in which capacitive and     
inductive loads react to a steady-state sinusoidal voltage.

The reactance of a load is equal to the imaginary value of the 
load’s impedance.

Therefore:

• the reactance of a resistor is

• the reactance of an inductor is

• the reactance of a capacitor is 




C

XC


1

 LXL 

 0RX

Reactance



32

A complex impedance, Z, can have both resistive 
and reactive (inductive or capacitive) components, 
and may be expressed in the form:

where: R is the resistive component of the load, and
X is the reactive component of the load. 

Note – the impedance of a resistor is

– the impedance of an inductor is

– the impedance of a capacitor is

Z=R+jXjXRZ 












C
jZC 

1

 LjZL  

RZR 

Complex Impedances

When all of the voltages and currents within a steady-state AC 
circuit are expressed as phasors and all of the circuit elements 
are defined by their impedance values, the circuit’s operation 
may be solved by a set of algebraic equations that are based on 
the Ohm’s Law equation:

VV
~

 II
~

Phasor Analysis of AC Circuits

ZIV  ~~
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If a voltage source having the phasor value      is 
applied across the complex impedance Z, then 
the phasor value of the current     may be 
solved by applying Ohm’s Law:
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Phasor Analysis of AC Circuits

Similarly, given the phasor voltage and current 
supplied to an impedance Z:

the impedance may be defined in terms of 
voltage and current as:

  IIVV
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where Z is a complex number expressed polar-form.

Phasor Analysis of AC Circuits
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Thus, given:

the impedance magnitude is defined by Ohm’s 
Law and the impedance angle is the difference 
between the voltage and current phase angles.

Note that the impedance angle  is the same as the 
previously defined “power angle”  that was defined 
during the AC power analysis.

  IIVV
~

       
~
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Z
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I
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Phasor Analysis of AC Circuits

Note that the following formulas may be used to 
convert an impedance between rectangular 
form and polar form:
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Phasor Analysis of AC Circuits
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The term Complex Power is used to characterize 
both the Real Power and the Reactive Power that
an AC source is producing or that a complex load 
impedance (with a resistive component and/or an 
inductive or capacitive reactive component) is 
consuming.

Complex Power (S) is a complex number and is 
defined by:

where: P is Real Power, and

Q is Reactive Power.

jXRZ 
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QjPS  

Complex Power

Complex Power (S):

may be solved directly from a circuit element’s 
phasor voltage and phasor current as:
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the real portion of which relates to Real Power and the 
imaginary portion of which relates to Reactive Power.

Complex Power
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Note that       is the complex conjugate of    , and  
is defined as:

The complex conjugate of a complex number 
expressed in polar form has the same magnitude 
as the original number but the angle is negated.
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Complex Conjugate

Apparent Power (|S|) is defined to be the 
magnitude of complex power:

Note that apparent power is often specified as 
one of the “ratings” of a machine, such that:

22 QPIVS 
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Apparent Power
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Power Factor (pf ) provides a measure of the portion 
of the apparent power that relates to real power:

Thus, power factor may be defined as:
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Note that power factor is often specified as having a leading or 
lagging characteristic, which is based on the angle relationship 
between the phasor voltage and the phasor current 

Power Factor

A leading power factor exists when the current 
waveform is “leading” the voltage, which 
occurs with a capacitive load impedance and 
results in a negative angle difference for θ:

A lagging power factor exists when the current 
waveform is “lagging” the voltage, which 
occurs with a inductive load impedance and 
results in a positive angle difference for θ:
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Power Factor
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Note that the angle θ for a purely resistive load 
has a zero value since the voltage and current 
waveforms are “in-phase”, resulting in a power 
factor that which is neither leading nor lagging.

This is referred to as a unity power factor since 
the value of power factor under this condition 
equals one.

1)0cos()cos( 

Z
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~




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

Power Factor

Complex Power (S):

Real Power (P):

Reactive Power (Q):

Apparent Power (|S|):

Power Factor (pf):

 IVjQPS
~~

cos IVP

sin IVQ

cospf

22 QPIVS 

Summary of Complex Power Equations


