

Power in AC Circuits

In electric circuits, **power** can be defined as the **rate** at which **electric energy** is either produced or consumed by an element within the circuit.

Although it is actually the **electric energy** that is either being produced or consumed by the circuit elements, power is also casually referred to as being produced or consumed within an electric circuit.

Power in AC Circuits

Power may be calculated in terms of the voltage and current waveforms associated with a specific circuit element by:

 $p(t) = v(t) \cdot i(t)$ (Watts)

where: $p(t)$ provides the **instantaneous rate** that an element either produces or consumes electric energy at any time *t*.

v(t)

i(t)

+

Power in AC Circuits

Note that the expression:

 $p(t) = v(t) \cdot i(t)$ *(Watts)*
 $v(t)$

defines the power "**produced**" by an element when the current is defined in the same direction as the voltage-rise across the element.

But, if the current is defined in the opposite direction as the voltage-rise across an element, then $p(t)$ defines the power "**consumed**" by that element.

Power from an AC Source

In the case of an AC source where:

$$
v(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)
$$

$$
i(t) = I_{peak} \cdot \sin(\omega \cdot t + \delta)
$$

the general expression for **power** produced by the source is:

$$
p(t) = v(t) \cdot i(t)
$$

= $V_{\text{peak}} \cdot I_{\text{peak}} \cdot \sin(\omega \cdot t + \phi) \cdot \sin(\omega \cdot t + \delta)$

i(t)

v(t)

i(t)

+

AC Sources and Resistive Loads

Given a resistor, whose voltage is:

$$
v_R(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)
$$

the resultant resistor current will be:

$$
i_R(t) = \frac{v_R(t)}{R} = \frac{V_{peak} \cdot \sin(\omega \cdot t + \phi)}{R}
$$

$$
= \frac{V_{peak}}{R} \cdot \sin(\omega \cdot t + \phi)
$$

R

AC Sources and Resistive Loads

Thus, for a resistive load:

$$
v_R(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)
$$

$$
i_R(t) = \frac{V_{peak}}{R} \cdot \sin(\omega \cdot t + \phi)
$$

Note that, the voltage and current **magnitudes** follow the Ohm's Law relationship:

$$
I_{peak} = \frac{V_{peak}}{R} ,
$$

and that the sinusoidal expression remains unchanged.

Thus, for a resistive load: $v_R(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)$ $f(t) = \frac{\dot{p} - p\cos\theta}{R} \cdot \sin(\omega \cdot t + \phi)$ $i_R(t) = \frac{V_{peak}}{R}$ **+ iR(t) AC Sources and Resistive Loads**

Based on this result, it can be seen that both the **frequency** and the **phase angle** of the resistor current are equal to those of the applied voltage...

For this reason, AC circuits containing resistive loads are often analyzed in terms of the magnitudes of the voltages and currents.

+

iR(t)

R

vR(t)

-

AC Power and Resistors

If an AC source is connected to a **resistive load**, such that:

$$
v_R(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)
$$

$$
i_R(t) = I_{peak} \cdot \sin(\omega \cdot t + \phi)
$$

$$
I_{peak} = \frac{V_{peak}}{R}
$$

then the **power** consumed by the resistor will be:

$$
p_R(t) = v_R(t) \cdot i_R(t)
$$

= $V_{\text{peak}} \cdot I_{\text{peak}} \cdot \sin^2(\omega \cdot t + \phi)$

For example: A 100Vpeak AC source has an **effective voltage** of: since it delivers an average power of 50W to a 100Ω resistor: which is equal to that from a 70.7V DC source: *volts V* $V_{\text{effective}} = V_{\text{RMS}} = \frac{V_{\text{peak}}}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 70.7$ 2 100 $=V_{_{RMS}}=\frac{V_{peak}}{\sqrt{2}}=\frac{100}{\sqrt{2}}=$ *Watts R* $P_{R(AC)} = \frac{V_{peak}^2}{2 R_{R(AC)}} = \frac{100^2}{2.100} = 50$ 2.100 100 2 ² $10²$ $\frac{d_{(AC)}}{2 \cdot R} = \frac{d_{peak}}{2 \cdot 100} =$ *Watts R* $P_{R(DC)} = \frac{V_{DC}^2}{R} = \frac{70.7^2}{100} = 50$ 100 $^{2}_{2}$ 70.7² $\frac{V_{DC}}{V_{DC}} = \frac{V_{DC}}{R} = \frac{100I}{100}$ *v(t)* **+** *i(t)* $v_R(t) \ge R$ *iR(t)* **+ VDC - IDC + R IR + VR - Effective Voltage**

Effective / RMS Voltage Magnitudes

It also turns out that the **effective voltage** for any non-sinusoidal, periodic AC voltage waveform, *v(t)*, can be determined by calculating the waveform's RMS value:

$$
V_{RMS} = \sqrt{\frac{1}{T} \cdot \int_{0}^{T} v^2(t) \cdot dt}
$$

Despite this fact, we will limit our discussion to sinusoidally-varying voltages.

RMS Magnitudes & Resistor Power

The result:

$$
P_{R(AC)} = V \cdot I
$$

is similar to the DC formula for power:

$$
P_{R(DC)} = V_{DC} \cdot I_{DC}
$$

which provides the motivation for expressing the AC waveforms in terms of their **RMS** (effective) magnitudes instead of their peak magnitudes.

$$
v(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)
$$

$$
i(t) = \sqrt{2} \cdot I \cdot \sin(\omega \cdot t + \phi)
$$

As previously stated, the **general expression** for the **power** produced by an AC source is: where: $v(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)$ $i(t) = I_{peak} \cdot \sin(\omega \cdot t + \delta)$ $= V_{\text{peak}} \cdot I_{\text{peak}} \cdot \sin(\omega \cdot t + \phi) \cdot \sin(\omega \cdot t + \delta)$ $p(t) = v(t) \cdot i(t)$ *v(t) i(t)* + **AC Power – General Case**

AC Power – General Case

v(t)

i(t)

+

The angle θ , is defined by the difference between the phase angles of the voltage and current,

$$
\theta = \angle \widetilde{V} - \angle \widetilde{I} = \phi - \delta
$$

such that:

 $v(t) = V_{peak} \cdot \sin(\omega \cdot t + \phi)$

 $i(t) = I_{peak} \cdot \sin(\omega \cdot t + \delta)$

The angle θ is often referred to as the **power angle**:

If an AC source is connected to a **resistive** load,

$$
v_R(t) = \sqrt{2} \cdot V_R \cdot \sin(\omega \cdot t + \phi)
$$

then the resistor current will be:

$$
i_R(t) = \sqrt{2} \cdot \frac{V_R}{R} \cdot \sin(\omega \cdot t + \phi)
$$

and the **power consumed by the resistor** will be:

 $p_R(t) = V_R \cdot I_R - V_R \cdot I_R \cdot \cos(2 \cdot \omega \cdot t)$

AC Power and Inductors

If the AC source is connected to an inductive load,

$$
v_L(t) = \sqrt{2} \cdot V_L \cdot \sin(\omega \cdot t + \phi)
$$

then the inductor current will be:

$$
i_L(t) = \sqrt{2} \cdot \frac{V_L}{\omega \cdot L} \cdot \sin(\omega \cdot t + \phi^\circ - 90^\circ)
$$

and the power consumed by the inductor will be:

 $p_L(t) = V_L \cdot I_L \cdot \sin(2 \cdot \omega \cdot t)$

AC Power and Inductors

The resultant power waveform has only one term:

 $p_L(t) = V_L \cdot I_L \cdot \sin(2 \cdot \omega \cdot t)$

which is a **purely sinusoidal** term that has a **zero average** value and varies at twice (2x) the frequency of the source voltage.

Since the power waveform has a zero-average value, the inductor consumes zero real power:

 $P_{I} = 0$ Watts

but power is flowing into and out of the inductor.

AC Power and Capacitors

If the AC source is connected to an capacitor load,

$$
v_C(t) = \sqrt{2} \cdot V_C \cdot \sin(\omega \cdot t + \phi)
$$

then the capacitor current will be:

$$
i_C(t) = \sqrt{2} \cdot V_C \cdot \omega \cdot C \cdot \sin(\omega \cdot t + \phi^\circ + 90^\circ)
$$

and the power consumed by the capacitor will be:

$$
p_C(t) = -V_C \cdot I_C \cdot \sin(2 \cdot \omega \cdot t)
$$

+

i(t)

 $v(t)$ $\left[\bigcap_{i \in I} v_{L}(t)\right] \quad \mathcal{R}$ L

vL(t)

iL(t)

AC Power and Capacitors

The resultant power waveform has only one term:

$$
p_C(t) = \boxed{-V_C \cdot I_C \cdot \sin(2 \cdot \omega \cdot t)}
$$

which is a **purely sinusoidal** term that has a **zero average** value and varies at twice (2x) the frequency of the source voltage.

Since the power waveform has a zero-average value, the capacitor consumes zero real power:

$$
P_C = 0
$$
 Watts

but power is flowing into and out of the capacitor.

Reactive Power

Reactive Power (*Q)* is defined as the magnitude of the power that is flowing into and out of a reactive load when supplied by an AC source.

Thus, given:

 $p_L(t) = V_L \cdot I_L \cdot \sin(2 \cdot \omega \cdot t)$

$$
p_C(t) = -V_C \cdot I_C \cdot \sin(2 \cdot \omega \cdot t)
$$

the reactive power for the inductive and capacitive loads can be defined as:

> $Q_c = -V_c \cdot I_c$ *Vars* $Q_L = +V_L \cdot I_L$ *Vars*

Phasor Representation of Sine Waves

A **phasor** is a representation of a **sinusoidal waveform** whose magnitude, phase and frequency are constant.

Phasors reduce the dependency of these parameters to three independent factors, thus allowing for the simplification of certain types of calculations.

It turns out that, for **steady-state AC circuits**, the time dependency of the sine-waves can be factored out, reducing the linear differential equations required for their solution to a simpler set of algebraic equations.

Phasors and AC Voltages

The **sinusoidal voltage**:

 $v(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)$

may be defined in the form of a **phasor voltage**:

$$
\widetilde{V} = V e^{j\phi} = V \angle \phi
$$

where it is expressed as a complex number in "*polar*" form, with **RMS** magnitude V and phase angle ϕ .

(Note – although phasor value may be expressed in terms of "*peak*" magnitudes, **RMS voltage magnitudes** are typically used in cases where "*power*" is of primary interest, and thus will be utilized in this course unless specifically stated otherwise.)

Phasors and AC Voltages

$$
v(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)
$$

 $\widetilde{V} = Ve^{j\phi} = V\angle\phi$

The **phasor voltage** defined above is shown both as a **complex exponential** $Ve^{j\phi}$ and as a **complex number in polar form** $V\angle\phi$

Phasors are typically presented in most "circuits" textbooks as complex numbers expressed in "polar" form, but some calculators do not accept this format, thus requiring the use of complex exponentials.

Phasors and AC Voltages

$$
v(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)
$$

$$
\widetilde{V} = V e^{j\phi} = V \angle \phi
$$

Note that although $e^{j\phi} = 1 \angle \phi$, mathematically the expression $e^{j\phi}$ is technically only valid if the angle ϕ is defined in **radians**.

In practice, ϕ is often expressed in degrees, especially when relating to phasors. Some calculators will accept complex exponentials with their angles expressed either in radians or in degrees; other calculators require the angle of the complex exponential to be entered in radians.

Phasors and AC Currents

The **sinusoidal current**:

 $i(t) = \sqrt{2} \cdot I \cdot \sin(\omega \cdot t + \delta)$

may also be defined in the form of a **phasor current**:

$$
\widetilde{I} = I e^{j\delta} = I \angle \delta
$$

where it is expressed as a complex number in "*polar*" form, with **RMS** magnitude *I* and phase angle δ .

(Note – **RMS current magnitudes** will be also utilized in this course unless specifically stated otherwise.)

Impedance of a Resistor

Since **Ohm's Law** holds true for resistors when supplied with any voltage source (including those expressed as phasors), the **impedance of a resistor** is equal to it's **resistance**:

$$
Z_R = \frac{\widetilde{V}_R}{\widetilde{I}_R} = R
$$

which is a **purely real number**.

Impedance of an Inductor

Given an **inductor** with voltage $v_L(t)$, the current flowing through the inductor can be defined in terms of the inductor's voltage and inductance:

$$
v_L(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)
$$

$$
i_L(t) = \sqrt{2} \cdot \frac{V}{\omega \cdot L} \cdot \sin(\omega \cdot t + \phi^\circ - 90^\circ)
$$

+ *VL* **^L ~** *IL* **~** *V* **~** *I* **~**

When expressed as **phasors**, the inductor's voltage and current are:

$$
\widetilde{V}_L = V \angle \phi \qquad \qquad \widetilde{I}_L = \frac{V}{\omega \cdot L} \angle \phi - 90^\circ
$$

Given a **capacitor** with voltage $v_c(t)$, the current flowing through the capacitor can be defined in terms of the capacitor's voltage and capacitance: When expressed as **phasors**, the capacitor's voltage and current are: $\tilde{V}_C = V \angle \phi$ $\tilde{I}_C = V \cdot \omega \cdot C \angle \phi + 90^\circ$ $v_c(t) = \sqrt{2} \cdot V \cdot \sin(\omega \cdot t + \phi)$ $i_c(t) = \sqrt{2} \cdot V \cdot \omega \cdot C \cdot \sin(\omega \cdot t + \phi^\circ + 90^\circ)$ **+** $\widetilde{\nu_c}$ \neq c *IC* **~** *V* **~** *I* **~ Impedance of a Capacitor**

Reactance

Reactance defines the manner in which capacitive and inductive loads react to a steady-state sinusoidal voltage.

The **reactance** of a load is equal to the imaginary value of the load's impedance.

Therefore:

- the reactance of a **resistor** is $X_R = 0 \Omega$
- the reactance of an **inductor** is $X_L = \omega \cdot L \Omega$
- the reactance of a **capacitor** is $X_c = \frac{-1}{\omega \cdot C}$ 1

Phasor Analysis of AC Circuits

 $\widetilde{V} = V \angle \phi$ $\tilde{I} = I \angle \delta$

When all of the voltages and currents within a **steady-state AC circuit** are expressed as **phasors** and all of the circuit elements are defined by their **impedance** values, the circuit's operation may be solved by a set of algebraic equations that are based on the Ohm's Law equation:

 $\tilde{V} = \tilde{I} \cdot Z$

If a voltage source having the **phasor** value \vec{V} is applied across the complex impedance *Z*, then the **phasor** value of the current \tilde{I} may be solved by applying Ohm's Law: **Z +** $=\frac{V}{Z}=\frac{V}{R+jX}=I\angle\delta$ *V Z* $\widetilde{I} = \frac{\widetilde{V}}{I}$ \tilde{V} \tilde{V} \tilde{V} \tilde{V} .
م *I* \tilde{r} ~
~ น
∼ิ **Phasor Analysis of AC Circuits**

Phasor Analysis of AC Circuits

Thus, given:

 $\widetilde{V} = V \angle \phi$ $\widetilde{I} = I \angle \delta$

the **impedance magnitude** is defined by Ohm's Law and the **impedance angle** is the difference between the voltage and current phase angles.

$$
Z = |Z| \angle \theta \quad \implies \quad |Z| = \frac{V}{I} \quad \theta = \phi - \delta
$$

Note that the impedance angle θ is the same as the previously defined "*power angle*" θ that was defined during the AC power analysis.

Phasor Analysis of AC Circuits

Note that the following formulas may be used to **convert an impedance** between rectangular form and polar form:

$$
Z = |Z| \angle \theta \implies Z = R + jX
$$

$$
R = |Z| \cdot \cos(\theta) \qquad X = |Z| \cdot \sin(\theta)
$$

$$
\bigoplus_{\widetilde{V}}\widetilde{V}\quad\left(\bigcap_{\widetilde{Z}}\widetilde{Z}\right)
$$

71

$$
Z = R + jX \quad \Longrightarrow \quad Z = |Z| \angle \theta
$$

$$
|Z| = \sqrt{R^2 + Y^2} \qquad \theta = \tan^{-1} \frac{Z}{Z}
$$

$$
|Z| = \sqrt{R^2 + X^2} \qquad \theta = \tan^{-1} \frac{X}{R}
$$

Complex Power

The term **Complex Power** is used to characterize both the **Real Power** and the **Reactive Power** that an AC source is producing or that a complex load impedance (with a resistive component and/or an inductive or capacitive reactive component) is consuming**.**

Complex Power (*S*) is a complex number and is defined by:

$$
S = P + j Q
$$

where: *P* is **Real Power**, and *Q* is **Reactive Power**.

$$
Z = R + jX
$$

Complex Conjugate

Note that \tilde{I}^* is the **complex conjugate** of \tilde{I} , and is defined as:

 $\widetilde{I}^* = (I \angle \delta)^* = (I \angle - \delta)$

The **complex conjugate** of a complex number expressed in **polar form** has the **same magnitude as the original number** but the **angle is negated**.

Apparent Power

Apparent Power (*|S|*) is defined to be the **magnitude of complex power**:

$$
S\big| = V \cdot I = \sqrt{P^2 + Q^2}
$$

Note that **apparent power** is often specified as one of the "*ratings*" of a machine, such that:

$$
S\big|_{\text{rated}} = V_{\text{rated}} \cdot I_{\text{rated}}
$$

Power Factor

Power Factor (*pf*) provides a measure of the portion of the apparent power that relates to real power:

$$
pf = \frac{P}{|S|}
$$

Thus, **power factor** may be defined as:

$$
pf = \frac{P}{|S|} = \frac{V \cdot I \cdot \cos \theta}{V \cdot I} = \csc \theta
$$

Note that **power factor** is often specified as having a **leading** or **lagging** characteristic, which is based on the angle relationship between the phasor voltage and the phasor current

Summary of Complex Power Equations

