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Steady-State AC Voltage Sources

The voltage potential of an AC source may be .
defined as: i(?)

V(t) =V e - SiN(@ -t + @) V(1)

where: Vpeak is the peak value of the voltage,
@ is the angular frequency (2nf) of the waveform, and

¢ is the phase angle of the voltage waveform.

v(t)
Vo .7

7P -y

time

Steady-State AC Current Sources

Similarly, the current produced by the AC source

may be defined as: .\ i1
(1) = | oy -SiN(0 -t + 5) ()
where: | peak 18 the peak value of the current,

@ is the angular frequency (2=f) of the waveform, and

O s the phase angle of the current waveform.

i(t)
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Power in AC Circuits

In electric circuits, power can be defined as the rate
at which electric energy is either produced or
consumed by an element within the circuit.

Although it is actually the electric energy that is
either being produced or consumed by the circuit
elements, power is also casually referred to as being
produced or consumed within an electric circuit.

Power in AC Circuits

Power may be calculated in terms of the voltage and
current waveforms associated with a specific circuit
element by:

p(t) =v(t)-i(t) (Watts)

where: p(t) provides the instantaneous rate that an
element either produces or consumes
electric energy at any time t.




Power in AC Circuits
Note that the expression:

it

p(t) = v(t)-i(t) (Watts) " I
defines the power “produced” by an element when
the current is defined in the same direction as the
voltage-rise across the element.
But, if the current is defined in the opposite direction i(t),
as the voltage-rise across an element, then p(t) ( t)
defines the power “consumed” by that element. g
o
oe Power from an AC Source
. % In the case of an AC source where:
e &
&5 V() =V eu -SIN(@ -t + 9) +
i " Q)

i(t) =1 s -SIN(@ -t +5)

the general expression for power produced by the
source is:

p(t) =v()-i(t)

=V Sin(@-t+ @) -sin(@-t+0)

peak ' I peak




Power from an AC Source

The power expression:
i(1)
pt)=V -1, -sin(@-t+¢)-sin(w-t+7) +
V(1)
is actually quite complex.

To better understand the true nature of the power —
expression, it may by useful to first consider the ( -
(1)

: . + !
case where the voltage source is applied to a @ ve(o)| § R
purely resistive load.
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AC Sources and Resistive Loads
Given a resistor, whose voltage is:
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Ve (t) :Vpeak ) Sin(a) T+ ¢) " ."" ir(t)

the resultant resistor current will be: :
VR(t) | R

Vi (t) _ Vpeak 'Sin(a)'t + ¢)
R R

iR(t):

Vpeak H
=R -sin(w -t + @)




AC Sources and Resistive Loads
Thus, for a resistive load:

Ve (t) :Vpeak Sln(COt+¢) " iR()

V ;
i (1) =%ak-sin(a)-t+¢) v SR

Note that, the voltage and current magnitudes follow
the Ohm’s Law relationship:

\Y

| _ " peak ,
eak
P R

and that the sinusoidal expression remains unchanged.

AC Sources and Resistive Loads
Thus, for a resistive load:

Ve (t) :Vpeak ) Sin(a) T+ ¢) " ."" ir(t)

V :
i (1) =%ak-sin(a)-t+¢) v | SR

Based on this result, it can be seen that both the
frequency and the phase angle of the resistor
current are equal to those of the applied voltage...

For this reason, AC circuits containing resistive loads
are often analyzed in terms of the magnitudes of the
voltages and currents.




AC Power and Resistors

If an AC source is connected to a resistive load,
such that:

Ve (t) =V eu -SiN(@ -t + @)

iy (1) = | e -SIN(@-t + )
Vv

I _ U peak
eak
P R

then the power consumed by the resistor will be:

Pr (t) = Vg (t)'iR(t)
=V -1 __-sin’(w-t+¢)

peak peak
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AC Power and Resistors
The figure below shows the power waveform:

P(t) =V, - sin* (@ 1+ 4)
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plotted along with the resistor’s voltage and
current waveforms:




AC Power and Resistors

As shown, power supplied to the resistor is
always non-negative, which is expected since a
resistor can only consume electric power.

Note — Since p(t) is the power “consumed” by the
resistor, a negative value would imply that
power is actually being “produced” by the
resistor, a result which can not occur.

AC Power and Resistors

Additionally, it can be seen that the power
waveform varies periodically, but with a
frequency that is 2x larger than that of the
applied voltage or the resultant current.




AC Power and Resistors
The peak magnitude of the AC power waveform is:

peak - peak peak

This should not be confused with the constant
power provided to a resistor by a DC source.

)

AC Power and Resistors

To better understand the resistor’s AC power
waveform, it is useful to rewrite the power
expression:

(by utilizing the trig-identity sin?x = ¥2-[1 — cos2x]):
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Pr®)=V_, -1, -sin’(w-t+¢)

vV -l
—“”kz = . [1-cos(2- w-1)]

V- A
Vot Voo o0 0y
2 2




AC Power and Resistors
Looking at the resultant AC power waveform:

+

V k ) Ipeak Vpeak ) Ipeak
P (t) = —~ 5 -cos(2- w-1) v(t)(

2

It can be seen that the waveform has two terms:

* The first term is a constant that relates to the
average value of the power that is consumed
by the resistor.

AC Power and Resistors
Looking at the resultant AC power waveform:

vV -l vV I
t — peak peak _ peak peak . COS 2 ) t
Pr(t) > > ( )

It can be seen that the waveform has two terms:

» The second term is a sinusoidal term that
varies at 2x the source frequency and provides
the fluctuation in the power waveform.
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Real Power

In AC systems, it is typically the average value of
the power that is desired.

This average power value is called Real Power.

The real power consumed by a resistive load is:

P

R(AC)

V-l
= Avg[p, (t)] = % (Watts)

AC vs. DC Power to Resistors

Note that the real power consumed by the resistor
IS % that of the peak power value:

()

(L)

“. Ppeak peak ) I peak

® Py e = = (Watts)
@ 2 2

This result is expected since the power waveform
fluctuates evenly between zero and its peak value.

Yet, this result is potentially confusing if compared

.oo to power supplied by a DC source to a resistor:
O
‘.“ Proe) = Voo * loe (Watts)




AC vs. DC Power to Resistors

Thus, in terms of the average power supplied to a
resistor, an AC source is only % as effective as a
DC source whose magnitude is equal to the peak
value of the AC source.

Vpeak ) I peak
Proe) = T (Watts)

If: V.=V >

PR(DC) :VDC : IDC (Watts)
Effective Voltage
Since the average AC power is proportional to the
square of the source’s peak voltage:
3
‘.‘. P = Vpeak | peak _ Vpeak 'Vpeak _ szeak
b e 2 2-R 2-R

if the peak value of the AC voltage is increased
such that it is~/2 times larger than the DC voltage:

VPeak = ﬁ‘VDC :: ‘

then the AC source will supply the same average >} 7]
power to the resistor as the DC source. '-.

12



Effective/ RMS Voltage Magnitudes

Based on this result, an effective voltage can be
defined for a sinusoidally-varying AC source,
such that:

V _ Vpeak
effective \/E

Note that the effective value of the AC source is
equal to the RMS (root-mean-squared) value of
the source voltage, as defined by the function:

1 Vo
Veffective :VRMS = ?‘IVZ (t) dt = ja
0

Effective Voltage

For example:

oS A 100V, AC source has an effective voltage of:
) v

“‘ Veffective :VRMs === @ =70.7 volts

b V2 2

since it delivers an average power of 50W to a
100Q resistor:

5 _ View _ 100°
R 2.R  2.100

=50 Watts

which is equal to that from a 70.7V DC source:

2 2
Pree) = V% = 71OTZ) =50 Watts




Effective/ RMS Voltage Magnitudes

It also turns out that the effective voltage for any
non-sinusoidal, periodic AC voltage waveform,
v(t), can be determined by calculating the
waveform’s RMS value:

V.. = i-jvz(t)-dt
RMS T d

Despite this fact, we will limit our discussion to
sinusoidally-varying voltages.

3

RMS Magnitudes

The voltage waveform may be expressed in terms
of its RMS voltage magnitude:
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V(t) =2V -sin(w-t + @)

%
where: V = \‘/’%ak is the RMS magnitude of the AC voltage.

v(t)

S L 7




RMS Magnitudes

Similarly, the current waveform may also be
expressed in terms of its RMS current magnitude:

i(t) =21 -sin(w-t+¢)

|
where: | = \”/e%k is the RMS magnitude of the AC current.

i(t)

A 7

RMS Magnitudes & Resistor Power

When the voltages and currents are expressed in
terms of their RMS magnitudes:

V=2V =42

peak peak

the power delivered to a resistor is:

prt)=V-1-V-I-cos(2-w-t)

with an average (Real Power) value of:

PR(AC) = Avg[pR (t)] =V -1




RMS Magnitudes & Resistor Power

The result:

Py =V

(AC) =

is similar to the DC formula for power:

P, =V -l

(oc) — Vb DC

which provides the motivation for expressing the
AC waveforms in terms of their RMS (effective)
magnitudes instead of their peak magnitudes.

V(t) =2V -sin(w-t + ¢)
i(t)=/2-1-sin(w-t+4¢)
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AC Power — General Case

As previously stated, the general expression for the
power produced by an AC source is: i) 1
: +
() =v)i) | v Q)
=V . | -SiN(@-t+ @) -sin(w-t +5)

where:  V(t) =V ., -sin(@-t + @)

i(t) =1 s -SIN(@ -t +5)

16



AC Power — General Case
If the voltages & currents are expressed in terms of their

RMS magnitudes, the power expression becomes: i }
. +
p(t) = v(t)-i(t) o
Ny
=2V V21 -sin(w-t+¢) sin(w-t+5)
=2V l-sin(e-t+¢)-sin(w-t+0)
which may be modified using several trigonometric
identities into the following form:
p(t)=V -1-cos(¢p—9)
—V -1-cos(¢p—0)-cos(2-w-t)
+V -1 -sin(¢—0)-sin(2-w-t)
o
se AC Power — General Case
.:: The modified power expression is often simplified by
o0 defining a new variable, 6, where: i?) 1
(T 1)
“. +
o.: 0=¢-5 o) r\)

and substituting it into the equation, resulting in the
general power expression:

p(t) =V -1-cos(d)
-V -1-co0s(0)-cos(2-w-t)
+V -1-sin(@)-sin(2- w-t)

17



AC Power — General Case

The angle 6, is defined by the difference between the
phase angles of the voltage and current, i) 1
~ ~ +
O=sN—-ZLl =¢-6 v(®) ,\D

such that:  v(t) =V ., -sin(@-t+¢)

i(t) =1 o -SIN(@-t +0)

The angle @ is often referred to as the power angle:

3

AC Power — General Case

This general expression defines the instantaneous
power produced by an AC source.
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p(t)=V -1-cos(d)
—V -1-cos(8)-cos(2-w-t)
+V -1 -sin(@)-sin(2- w-t)

Likewise, if the source is connected across a load
that may have resistive, capacitive, and/or N i
inductive components, then the solution also ,’
defines the instantaneous power consumed by @ "o =,
the AC supplied load. '




AC Power — General Case
The general expression for AC power has three terms:
p(t)=V -1-cos(0)
—V -1-cos(d)-cos(2-w-t)
+V -1 -sin(@)-sin(2- w-t)

To help clarify the relevance of each term, let’s first
look at the power waveforms that result from the
source being used to supply either a purely resistive,
purely inductive, or purely capacitive load.

3

™
]
—

18,0202 %258
2D T0se. 2e~evy
20 02 2% % 0

AC Power and Resistors
If an AC source iIs connected to a resistive load,

Vo (1) =+/2 -V, -sin(@-t + @)
then the resistor current will be:
i (1) :ﬁ-\%-sin(a)-t+¢)

and the power consumed by the resistor will be:
Pr(t) =V 1=V 1;-c0s(2-@-t)

19



AC Power and Resistors
The resultant power waveform has two terms:

Pr(t)=|Vg 15| —|Vg 15 -COS(2-@-t)

+
« the first of which is a constant that provides ”(’)(
the average power supplied to the resistor,
which is defined to be Real Power, P, and

* the second of which is a purely sinusoidal
term that has a zero average value and varies
at 2x the frequency of the source voltage.

P, =V;-1; Watts

3

AC Power and Inductors
If the AC source is connected to an inductive load,

™
]
—

'-
age s
S

v (t) =2V, -sin(@-t + @)

then the inductor current will be:

iL(t):x/E- Vi -Sin(w-t+ ¢°—90°)
w-L

and the power consumed by the inductor will be:

p )=V -1 _-sin(2-w-t)




AC Power and Inductors
The resultant power waveform has only one term:

p () =|V_ -1 -sin(2-w-t)

which is a purely sinusoidal term that has a
zero average value and varies at twice (2x) the
frequency of the source voltage.

Since the power waveform has a zero-average
value, the inductor consumes zero real power:

P.=0 Wiatts
but power is flowing into and out of the inductor.

3

AC Power and Capacitors
If the AC source is connected to an capacitor load,
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Ve () =~/2 -V, -sin(w-t + ¢)

then the capacitor current will be:

i (1) =v2 -V, -@-C-sin(@-t +¢°+90°)

and the power consumed by the capacitor will
be:

Pc(t) ==V, 1. -sin(2-w-t)




AC Power and Capacitors
The resultant power waveform has only one term:

Pc(t)=|-V. 1. -sin(2-w-t)

which is a purely sinusoidal term that has a
zero average value and varies at twice (2x) the
frequency of the source voltage.

Since the power waveform has a zero-average
value, the capacitor consumes zero real power:

P. =0 Watts
but power is flowing into and out of the capacitor.

AC Power and Reactive Loads

Although the (average) real power consumed by
both inductors and capacitors is zero, there
is power flowing in and out of these elements
when supplied by an AC source:

p (t)=V, -1 -sin(2-w-t)

Pc(t) ==V, 1. -sin(2-w-t)

The term Reactive Power is used to characterize
the amount of energy that is being temporarily
stored and then released by a “reactive load”
(capacitive or inductive).




Reactive Power

Reactive Power (Q ) is defined as the magnitude
of the power that is flowing into and out of a
reactive load when supplied by an AC source.

Thus, given: p.(t)=V, -1 _-sin(2-w-t)
pc(t) =V, 1. -sin(2-w-t)

the reactive power for the inductive and
capacitive loads can be defined as:
Qu=+V -l Vars

Q. =—-V.-I. Vars

Reactive Power

Reactive Power is given the unit of “Vars”,
which stands for:

“Volt-Amps-Reactive”.
Qu=+V -l Vars
Q. =—V.-I. Vars

Note that the reactive power for an inductor is positive
while the reactive power for a capacitor is negative.

Thus, it is often stated that an inductor “consumes”
reactive power while a capacitor “produces” reactive
power.

V()

23



AC Power — General Case

The previous results can be used to define the
relevance of the three terms that appear in the
general AC power expression:

it

p(t) =V - 1 -cos(6) @ Conee!
~V -1-cos(0)-cos(2-w-t) Load
+V -1 -sin(@)-sin(2- w-t)
The first term is a constant that provides the
average or Real Power that is consumed by the
resistive portion of the load:
P=V-1-cos(d)
‘o AC Power — General Case
‘:: The previous results can be used to define the
[0 relevance of the three terms that appear in the
(T 1) .
“. general AC power expression: i)
0@ *
) p(t) —V -1 'COS(Q) General
2 Q) | |

-V -1-cos(d)-cos(2-w-t)
+V -1 -sin(0)-sin(2- w-t)

Z=R+jX

The second term is a sinusoidal term that varies
at 2x the source frequency and provides the
fluctuation in the power being supplied to the
resistive portion of the load.




AC Power — General Case

The previous results can be used to define the
relevance of the three terms that appear in the
general AC power expression:

!

[ yi

General
R,L,C
Load

+

p(t)=V -1-cos(d) @ "o
~V -1-cos(#)-cos(2-w-t) ‘:

LV -1-sin(8) -sin(2- 1)

Z=R+jX

The third term is also purely sinusoidal, the
magnitude of which provides the Reactive Power
“consumed” by the reactive portion of the load.

Q=V-I-sin(@) Vars

3

AC Power in Combination Circuits

Note that, if the load has both a resistive and a
capacitive or an inductive component, then the
power angle @ will fall somewhere in the range:

m
]
—

0¥
8.0

[ yi®)
o o .' General
-90°< § <+90 @ o | |Gone

Load

Y. resulting in the existence of all three terms in
b5 the general power expression.

[

“‘

.‘.‘ Thus, there will be Real and Reactive Powers
> % flowing into the load, as defined by:

90

o0 P=V-1.cos(9)

‘.‘

3 Q=V-I-sin()




Phasor Representation of Sine Waves

A phasor is a representation of a sinusoidal waveform whose
magnitude, phase and frequency are constant.

Phasors reduce the dependency of these parameters to three
independent factors, thus allowing for the simplification of
certain types of calculations.

It turns out that, for steady-state AC circuits, the time dependency
of the sine-waves can be factored out, reducing the linear
differential equations required for their solution to a simpler set
of algebraic equations.

Phasors and AC Voltages

The sinusoidal voltage:

V(t) =+/2-V -sin(w-t + @)

may be defined in the form of a phasor voltage:

V =Vel =v/g

where it is expressed as a complex number in “polar” form,
with RMS magnitude " and phase angle ¢.

(Note — although phasor value may be expressed in terms of “peak”
magnitudes, RMS voltage magnitudes are typically used in
cases where “power” is of primary interest, and thus will be
utilized in this course unless specifically stated otherwise.)




Phasors and AC Voltages

V(t) =2V -sin(w-t + @)
V =Ve =V/¢

The phasor voltage defined above is shown both as a complex
exponential Ve'’ and as a complex number in polar form V. ¢

Phasors are typically presented in most “circuits” textbooks as complex
numbers expressed in “polar” form, but some calculators do not accept this
format, thus requiring the use of complex exponentials.

Phasors and AC Voltages

V({t) =2V -sin(w-t + @)

V =Ve =v/g

Note that although e =1/¢ , mathematically the expression e/
Is technically only valid if the angle ¢ is defined in radians.

In practice, ¢ is often expressed in degrees, especially when
relating to phasors. Some calculators will accept complex
exponentials with their angles expressed either in radians or
in degrees; other calculators require the angle of the complex
exponential to be entered in radians.




Phasors and AC Currents

The sinusoidal current:
i(t)=+/2-1-sin(o-t+0)
may also be defined in the form of a phasor current:
I =le’ =145

where it is expressed as a complex number in “polar” form, with
RMS magnitude 7 and phase angle 6.

(Note — RMS current magnitudes will be also utilized in this course
unless specifically stated otherwise.)

Impedance

An impedance is a general expression that is used
to define the ratio of the phasor value of the
voltage across a load compared to the phasor
value of the current flowing through the load.

v
|

Z =

Based on this definition, the impedance Z can be
defined in terms of the voltage and current as:

Z:YT VZp V

Vv
=5 _T4(¢—5)_|—49_\z\49




Impedance of a Resistor

Since Ohm’s Law holds true for resistors when
supplied with any voltage source (including
those expressed as phasors), the impedance of a
resistor is equal to it’s resistance:

Z,==R =R

Ve
IR

which is a purely real number.

)=
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Impedance of an Inductor

Given an inductor with voltage v, (2), the current
flowing through the inductor can be defined in
terms of the inductor’s voltage and inductance:

vL(t):«/§-V-sin(a)-H¢) V( L
i (t) =\/§-LL-sin(a)-t+¢°—90°)
-

When expressed as phasors, the inductor’s voltage
and current are:

~ -~V
VL :VL¢ IL:HZ¢_9OO

29



Impedance of an Inductor
Based on the inductor’s phasor voltage and current:
V, =V/¢ T =Y o0
w-L

+
the inductor’s impedance can be defined as: V( )

=(w-L)£+90°

which is typically expressed as a purely imaginary

complex number in rectangular form: Note that the

impedance of

Z, =(0-L)£+90°=0+ jo-L=[jo L] « | oo mesien

imaginary number

2

Impedance of a Capacitor

Given a capacitor with voltage v(), the current
flowing through the capacitor can be defined in
terms of the capacitor’s voltage and capacitance:

Ve () =2V sin(@-t+¢)
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i (1) =~/2-V-@-C-sin(@-t + ¢°+90°)

When expressed as phasors, the capacitor’s voltage
and current are:

~

Ve =VZ4 l. =V @ -CLp+90°




Impedance of a Capacitor
Based on the capacitor’s phasor voltage and current:

V =V/¢ | =V @ LLg+90°

the capacitor’s impedance can be defined as :

= = Z£-90°

Z, =
V-0 C/$p+90° o-C

A VZg 1
IC

which is typically expressed as a purely imaginary

Note that the
impedance of

complex number in rectangular form:

a capacitor
ZC :ié_goo =0-— Ji: — JL — . is.apositive,
w-C - w-C imaginary number
Reactance

Reactance defines the manner in which capacitive and
inductive loads react to a steady-state sinusoidal voltage.

The reactance of a load is equal to the imaginary value of the
load’s impedance.

Therefore:
» the reactance of a resistor is Xg=00Q

« the reactance of an inductor is Xc=w-L Q

'8
-0
|
H

* the reactance of a capacitor is Xc=——0Q

o2¢
8,
2

(@]




Complex Impedances

A complex impedance, Z, can have both resistive
and reactive (inductive or capacitive) components,
and may be expressed in the form:

Z=R+ jX z:R+jx[L|

where: R is the resistive component of the load, and
Xis the reactive component of the load.

Note — the impedance of a resistoris Z, =R

— the impedance of an inductoris Z, = j(w-L)

— the impedance of a capacitoris Z . = —j(icj
a).

Phasor Analysis of AC Circuits

V =V/¢
I =146

When all of the voltages and currents within a steady-state AC
circuit are expressed as phasors and all of the circuit elements
are defined by their impedance values, the circuit’s operation
may be solved by a set of algebraic equations that are based on
the Ohm’s Law equation:

~

V=I.7

32



Phasor Analysis of AC Circuits

If a voltage source having the phasor value V is
applied across the complex impedance Z, then
the phasor value of the current | may be
solved by applying Ohm’s Law:

VoV s
Z R+ jX

~
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Phasor Analysis of AC Circuits

Similarly, given the phasor voltage and current
supplied to an impedance Z:

V=Vsg =145

the impedance may be defined in terms of
voltage and current as:

_\7_VL¢_\L

\
=== =—L(p-90)=—4L0=|2|£L6
I 1Zo | (#=9) I H

where Z is a complex number expressed polar-form.

33



Phasor Analysis of AC Circuits
Thus, given:
V=Vsgp |=1468

the impedance magnitude is defined by Ohm’s
Law and the impedance angle is the difference
between the voltage and current phase angles.

Z=|z|£6 = \z\:VT 6=¢p—-o

Note that the impedance angle @ is the same as the
previously defined “power angle” @ that was defined
during the AC power analysis.

2

Phasor Analysis of AC Circuits

Note that the following formulas may be used to
convert an impedance between rectangular
form and polar form:

Z=|Z|£6 == Z=R+jX
R=|Z|-cos(9)  X=|Z|sin(6)
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Z=R+jX = Z=|7|£6

Z|=VR*+X? Q:tanlé




Complex Power

The term Complex Power is used to characterize
both the Real Power and the Reactive Power that
an AC source is producing or that a complex load
impedance (with a resistive component and/or an
inductive or capacitive reactive component) is
consuming.

Complex Power (S) is a complex number and is
defined by:

S=P+jQ

where: P is Real Power, and
0 is Reactive Power.

Complex Power
Complex Power (S):

S=P+jQ

may be solved directly from a circuit element’s
phasor voltage and phasor current as:

S=P+jQ=V-1"=(VZLg)-(1£-5)
=V 1 L(g-8)=V-126
=|V-l-cos@+ jV-Il-sind

the real portion of which relates to Real Power and the
imaginary portion of which relates to Reactive Power.




Complex Conjugate
Note that 1 * is the complex conjugate of 1, and
Is defined as:
1" =(1£8)" =(1£-6)

The complex conjugate of a complex number
expressed in polar form has the same magnitude
as the original number but the angle is negated.

3

Apparent Power

Apparent Power (|S]) is defined to be the
magnitude of complex power:

S|=V-1=yP?+Q?

Note that apparent power is often specified as
one of the “ratings” of a machine, such that:
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Power Factor

Power Factor (pf) provides a measure of the portion
of the apparent power that relates to real power:

_P
S|
Thus, power factor may be defined as:
¢ _ P _V-l.cos@ _

S| V-l

pf

cos &

Note that power factor is often specified as having a leading or
lagging characteristic, which is based on the angle relationship
between the phasor voltage and the phasor current

3

Power Factor

A leading power factor exists when the current
waveform is “leading” the voltage, which
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“. occurs with a capacitive load impedance and
‘.‘ results in a negative angle difference for 6:
0 0=9-0

“. . .

‘1) -90°<60<0

A lagging power factor exists when the current
waveform is “lagging” the voltage, which
occurs with a inductive load impedance and

5@ _ :
‘.. results in a positive angle difference for 6:
os 0=¢-5
“‘
@ 0°< 6 <+90°




Power Factor

Note that the angle @ for a purely resistive load
has a zero value since the voltage and current
waveforms are “in-phase”, resulting in a power
factor that which is neither leading nor lagging.

This is referred to as a unity power factor since
the value of power factor under this condition
equals one.

=0
O=¢p—0=0°
cos(d) =cos(0°) =1

3

Summary of Complex Power Equations
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Complex Power (S): S=P+jQ=V-1"

Real Power (P): P=V-I-cosd

Reactive Power (Q): Q=V-l-sing

Apparent Power (|S|): S|=V - 1=4P*+Q’
Power Factor (pf): pf =cosé




