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Given a point P(x,y) plotted on a unit circle centered at the origin 
of the x-y plane, the instantaneous y-value of the point as a 
function of its angular position α on the circle can be used to 
define the sine function, where:

)sin()(  y

The Sine Function
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The function, sin(α), is a periodic function that repeats with every 
360° or 2π radian increase in the angle α:

• As α varies from 0°360°, sin(α) varies from 010-10,
repeating again with every additional 360° increase in α. 

The Sine Function



1

y-axis

x-axis

y

0o

90o

180o

270o

360o

P(x,y)



3

The function:

can also be shown by plotting y(α) as a function of angle α: 
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The Sine Function

One cycle of a periodic waveform is the smallest portion of the 
waveform that, if repeated continuously, will reproduce the 
entire waveform.

• The function y(α) completes one cycle of variation every time 
α increases by 360°.
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As shown below, the function:

• has a peak magnitude Yp= 1,
• has a peak-to-peak magnitude Yp-p= 2, and
• has an average value Yavg= 0. 
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The Sine Function – Amplitude
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When the sine function is multiplied by a (real) constant A:

the peak magnitude and the peak-to-peak magnitude are both 
multiplied by A.

(The average value and the repetition interval both remain unchanged) 
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If the angle-term within the sine function is multiplied by a 
constant B:

then the waveform will repeat B times within the 360° interval.  

(Note: B=3 as shown in the figure below)
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The Sine Function

If a constant  is added to the angle-term within the sine function:

then the entire waveform will shift to the left or to the right by  
the angle .

(Note:  = 60° as shown in the figure below)
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The Sine Function – Phase Shift
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The addition of a positive constant  to the angle-term within the 
sine function:

results in a phase shift of the waveform to the left by the angle .

(Note:  = 60° as shown in the figure below)
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The Sine Function – Phase Shift

The addition of a negative constant  to the angle-term within the 
sine function:

results in a phase shift of the waveform to the right by the angle .

(Note:  = −60° as shown in the figure below)
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Refer back to point P(x,y) that is rotated around a unit circle:

Each time P rotates one complete revolution around the circle, the 
function y(α) progresses through one cycle of its waveform.

What if P is continuously rotated around the circle at a constant 
rate?

Sine as a Function of Time
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If P is rotating at a constant rate, ƒ, such that ƒ is the number of 
revolutions per second that P rotates…

Then the sine function y(t) will progress through ƒ cycles of its 
waveform each second.

(As shown below, ƒ=2 revolutions per second)
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The frequency, ƒ, of a periodic function is defined as the number 
of cycles that the function will progress through in one second.

Frequency is assigned the standard unit Hertz, where:

Hertz = cycles/sec

Frequency
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If P is rotating at a constant rate ƒ (rev/sec)…

Then the angle α increases at a rate of 2π·ƒ (rad/sec) since each 
rotation relates to an angular increase of 2π radians.

Sine as a Function of Time
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The Angular Velocity (ω) of a sine function is the angular rate at 
which the sine-angle increases:

ω = 2π·ƒ (rad/sec)

Note – Although angular velocity, ω, can be expressed in units of deg/sec, 
the standard units for ω is rad/sec.

Angular Velocity
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If Angular Velocity (ω) defines the rate at which the angle of the 
sine function increases in radians/sec…

ω = 2π·ƒ (rad/sec)

then ω·t defines a radian angle if t is expressed in seconds.

And, since the term ω·t defines an angle, it can be used in place of 
the angle α in the sine function provided:

α = ω·t (radians)

Sine as a Function of Time
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Thus, we can express sine as a function of time, y(t), such that:

where:

)sin()( tty  
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Sine as a Function of Time
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The period, T, of a periodic function is the length of time it takes 
for the function to progress through one cycle of its waveform.

Note – Period is typically defined in standard units of seconds.

Period
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Since the function:

progresses through ƒ cycles of its waveform each second, then 
the period of the function (i.e. – the amount of time required to 
complete each cycle) can be determined from frequency as:
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Thus, given a sine function having frequency ƒ:

the period of the function can be determined by:

Or, given a periodic waveform having period T, the frequency of 
the waveform can be determined by: 
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Given a sinusoidally varying waveform with a peak magnitude Yp, 
an angular frequency ω, and a phase angle , the waveform may 
be expressed as a time function y(t), where:
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Sine as a Function of Time

Given a sinusoidal waveform, y(t), plotted as a function of time t, 
determine the following characteristics of the waveform:
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Period Frequency
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Determining Sine from a Time Plot
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From the plot of y(t) shown below:

Peak Magnitude
Yp = 4 volts

Peak-to-Peak Magnitude
Yp-p = 4 – (-4) = 8 volts
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Determining Sine from a Time Plot

From the plot of y(t) shown below:

Period
T = 0.46 – (-0.04) = 0.50 sec

Frequency
ƒ = T-1 = (0.50)-1 = 2 Hertz (cycles/sec)
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Utilizing the value of the frequency ƒ:

Angular Frequency
ω = 2π·ƒ = 4π (radians/sec)
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Determining Sine from a Time Plot

From the plot of y(t) shown below:

Phase Shift
t = 0.04 (seconds), converted to degrees 
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Thus, given the plot of the function y(t), where:

the exact expression for y(t) is: 
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AC Circuits
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DC voltages and DC currents, such as those supplied by an ideal 
battery, remain constant in time once steady-state conditions are 
reached.

+
VDC

t

VDC

Time-varying Voltages and Currents

There is another class of voltages and currents, called AC voltages
and AC currents, whose magnitudes vary in a periodic manner 
as time increases under steady-state conditions.

Although the term “AC” actually stands for “Alternating Current”, 
it is used to describe both time-varying voltages and currents.

t

vAC

t

iAC

Time-varying Voltages and Currents
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The most common type of AC voltages (and currents) are those 
that vary in a sinusoidal manner, as shown in the figure below.

Sinusoidally-varying AC voltages are typically created either by 
rotating machines (generators) or by electronic devices (AC 
power supplies). 

AC Voltage Sources
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The “+” sign is used to define the direction of the 
voltage-rise (potential force) provided by the source 
as defined by the function v(t).

When the function goes “negative”, then the force 
defined by the voltage-rise is in the “negative” or 
opposite direction.

AC Voltage Sources

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

)(tv

v(t)

+



18

Since both the magnitude and sign of the voltage 
potential across the “AC” source vary with time, 
taking on both positive and negative values, the 
direction of the resultant current will also vary 
with time…

Thus the term  Alternating Current

v(t)
+

i(t)

AC Voltage Sources
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The voltage potential of an AC source may be defined 
as: 

where: is the peak value of the voltage,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the voltage waveform.
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Similarly, the current produced by the AC source may 
be defined as: 

where: is the peak value of the current,

is the angular frequency (2πƒ) of the waveform, and

is the phase angle of the current waveform.
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Steady-State AC Voltage Sources
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Ohm’s Law defines the voltage/current relationship 
for a resistive load.  This relationship holds true for 
all types of voltages and currents, including both AC 
and DC.

A time-varying voltage vR(t) supplied across a 
resistor will result in a time-varying current iR(t)
flowing through the resistor, such that:

+
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iR(t)
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AC Sources and Resistive Loads
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Given a resistor, whose voltage is:

the resultant resistor current will be:
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AC Sources and Resistive Loads

+

vR(t)
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R

Thus, for a resistive load:

Note that the voltage and current magnitudes follow 
the Ohm’s Law relationship:
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Thus, for a resistive load:

Also note that the phase angle of the resistor current 
is equal to the phase angle of the applied voltage…

There is no phase angle difference between the voltage and 
current waveforms relating to a purely resistive load.
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AC Sources and Resistive Loads
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Since Ohm’s Law holds true for resistive loads 
supplied with AC voltages,

all of the basic circuit theory derived for DC circuits 
can also be applied to AC resistor circuits:

• Series and Parallel Equivalent Resistances

• Kirchhoff’s Voltage and Current Laws

• Voltage and Current Dividers

• The Superposition Theorem

• Thevenin’s Theorem

• The Maximum Power Transfer Theorem

AC Sources and Resistive Loads
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What if the AC source is supplying a load that is 
purely reactive…

I.e. – either Capacitive or Inductive?

Similar to resistive loads, a sinusoidal (AC) voltage 
source will cause a sinusoidal (AC) current to flow 
through both capacitors and inductors.

But, their voltage and current waveforms do not 
follow the linear Ohm’s Law relationship.  Instead, 
their voltage and current waveforms are governed by 
a differential relationship. 

AC Sources and Reactive Loads
+
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C

+
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L

For an ideal capacitor, the voltage-current relationship 
is defined by the following equations:

We may obtain a solution for steady-state AC operation 
from these relationships.
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AC Sources and Capacitors
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Given a sinusoidal voltage applied across a 
capacitor:

the associated capacitor current will be:

To allow for direct comparison, the cosine 
function can be converted to an equivalent 
sine function using the identity:

)cos(2)(   tCVtiC

AC Sources and Capacitors

+
Cv(t)

i(t)

vC(t)

iC(t)

)90sin()cos(  xx

)sin(2)(   tVtvC

The resultant capacitor voltage and current 
waveforms, expressed as sine functions, are:

Note that:

• The capacitor current is phase-shifted by +90°
compared to the capacitor voltage, and

• The voltage and current magnitudes do not 
follow the linear Ohm’s Law relationship 
that holds true for resistors.

)90sin(2)(   tCVtiC

AC Sources and Capacitors

+
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)sin(2)(   tVtvC
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Given the sinusoidal voltage applied to an inductor:

the associated current will be:

resulting in a power angle:

)sin(2)(   tVtvL
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AC Sources and Inductors
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L

The effective voltage of a sinusoidal source:

is equal to the RMS (root-mean-squared) value 
of the purely sinusoidal voltage, as defined by 
the function:

2
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Thus, the voltage waveform may be expressed in 
terms of its RMS voltage magnitude: 

where: is the RMS magnitude of the AC voltage.
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Similarly, the current waveform may also be 
expressed in terms of its RMS current magnitude: 

where: is the RMS magnitude of the AC current.
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A phasor is a representation of a sine-wave whose magnitude, 
phase and frequency are constant.

Phasors reduce the dependency of these parameters to three 
independent factors, thus allowing for the simplification of 
certain types of calculations.

It turns out that, for steady-state AC circuits, the time dependency 
of the sine-waves can be factored out, reducing the linear 
differential equations required for their solution to a simpler set 
of algebraic equations.

Phasor Representation of Sine Waves

The sinusoidal voltage:

may be defined in the form of a phasor voltage:

in which the voltage is expressed as a complex number in “polar” 
form, having the RMS magnitude V and the phase angle  .

(Note – although the phasor value may be expressed in terms of  “peak”
magnitudes, RMS voltage magnitudes will be utilized in this 
course unless specifically stated otherwise.) 

)sin(2)(   tVtv

  VVeV j~

Phasors and AC Voltages
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For example, given the sinusoidal voltage:

which may be expressed in terms of its RMS magnitude: 

The phasor representation of this voltage is:

such that:

volts)30377sin(100)(  ttv

volts307.707.70
~

)( 6 
jeVtv

Phasors and AC Voltages

volts)30377sin(7.702)(  ttv

radians
6360

radians2
3030







The sinusoidal current:

may also be defined in the form of a phasor current:

in which the current is expressed as a complex number in “polar” 
form, having the RMS magnitude I and the phase angle  .

(Note –RMS current magnitudes will also be utilized in this course unless 
specifically stated otherwise.) 

)sin(2)(   tIti

  IIeI j~

Phasors and AC Currents
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The impedance of a load provides a measure of 
the response that the load will have when 
supplied by a steady-state AC waveform.

Specifically, the impedance value of a load, Z, is 
defined as the ratio of the phasor voltage that is 
applied across the load over the phasor current 
that flows through the load:

the standard units of which are Ohms.

Impedance
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Based on the impedance expression:

an Ohm’s Law type of relationship between 
the phasor values of the load voltage and 
current can be defined:

which means that any of the DC circuit theory that was derived 
based on Ohm’s Law can also be applied to steady-state AC 
circuits whose loads are expressed as impedances and whose 
voltages and currents are expressed by their phasor values.

Impedance
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Thus, given the phasor values of the load voltage 
and current:

the impedance, Z, can be expressed in terms of
their phasor values as :

where:

Note – Impedance is typically expressed as a complex written in “rectangular” form:  Z=R+jX
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Given the voltage across a resistor:

the current flowing through the resistor will be:

When expressed as phasors, the resistor’s voltage 
and current can be rewritten as:

Impedance of a Resistor
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Based on the values of its phasor voltage and current:

the impedance of the resistor can be defined as: 

Thus, the impedance of a resistor is equal to its 
resistance, which is a purely “real” value:  

Impedance of a Resistor
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Thus, not only does Ohm’s Law hold true for 
resistors that are supplied with both DC voltages 
and time-varying (AC) voltages:

Ohm’s Law also holds true for resistors whose 
voltages and currents are expressed as phasors:

Impedance of a Resistor
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Given the voltage across an inductor:

the current flowing through the inductor will be:

When expressed as phasors, the inductor’s voltage 
and current can be rewritten as:

Impedance of an Inductor
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Based on the inductor’s phasor voltage and current:

the impedance of the inductor can be defined as:

which can be expressed in rectangular form as:  

Impedance of an Inductor

+
LVL

~

IL
~

V
~

I
~

  LjLjLZL   090

  












 90

90
~

~
L

L
V

V

I

V
Z

L

L

L

L
L 






dt

tdi
Ltv L

L

)(
)( 

 LL VV
~ 


 90

~ 
 L

V
I L

L



32

Thus, based on its phasor voltage and current:

the impedance of the inductor can be defined as:

which is a positive imaginary number.

And, when expressed as impedances, Ohm’s Law also
holds true for inductors whose voltages and currents 
are expressed as phasors.

Impedance of an Inductor
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Given the voltage across a capacitor:

the current flowing through the capacitor will be:

When expressed as phasors, the capacitor’s voltage 
and current can be rewritten as:

Impedance of an Capacitor
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Based on the capacitor’s phasor voltage and current:

the impedance of the capacitor can be defined as: 

which can be expressed in rectangular form as:  

Impedance of an Capacitor
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Thus, based on its phasor voltage and current:

the impedance of the capacitor can be defined as:

which is a negative imaginary number.  

And, when expressed as impedances, Ohm’s Law also
holds true for capacitors whose voltages and currents 
are expressed as phasors.

Impedance of an Capacitor
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A complex impedance Z is an impedance can have 
both resistive and reactive (inductive or capacitive) 
components, and may be expressed in the form:

where: R is the resistive component of the load, and
X is the reactive component of the load. 

Note: • the impedance of a resistor is:

• the impedance of an inductor is:

• the impedance of a capacitor is:

Z=R+jXjXRZ 

Complex Impedances
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Reactance defines the manner in which capacitive and inductive 
loads react to a steady-state sinusoidal voltage.

The reactance of a load is equal to the imaginary value of the 
load’s impedance value.

Therefore:

• the reactance of a resistor is:

• the reactance of an inductor is:

•  the reactance of a capacitor is:

Reactance
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If all of the voltages and currents within a steady-state AC circuit 
are expressed as phasors:

and all of the “loads” are defined by their impedance values:

then the circuit’s operation may be solved by a set of algebraic 
equations based on Ohm’s Law:

VV
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Phasor Analysis of AC Circuits
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If a voltage source having the phasor value      is 
applied across the complex impedance Z, then 
the phasor value of the current      may be 
solved by applying Ohm’s Law:
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Phasor Analysis of AC Circuits
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Similarly, given the voltage and current supplied 
to an impedance:

the impedance may be defined in terms of 
voltage and current as:
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Phasor Analysis of AC Circuits
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Thus, given:

the impedance magnitude is defined by Ohm’s 
Law and the impedance angle is the difference 
between the voltage and current angles.

Note that the impedance angle  is the same as the 
previously defined “power angle” from the solution 
for AC power.
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The following formulas may be used to convert 
an impedance between rectangular form and 
polar form:
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X
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jXRZZZ
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Given the voltage and current:

supplied to a complex impedance Z, the resultant 
angle  may fall anywhere in the range:

–90° ≤  ≤ +90°
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