Southern Polytechnic State University Electrical and Computer Engineering Technology			chnology	ECET 2111 Laboratory No. 12 Mutual Inductance Pt. B	
Name:		Date _		Lab Section	
In In	troduction this exercise you will det	ermine the mutual ir	nductance betw	veen a pair of mutually coupled coils.	
P 1 1.	rocedure Connect the circuit show	n in Figure 1.			
2.	Leaving the output terminals open-circuited ($I_2 = 0A$), using an oscilloscope, take the necessary measurements to calculate the impedance Z_{ABO} as seen by the source. Verify this impedance using the LCR meter by converting the results of the LCR measurement to impedance form. (You must disconnect the source and scope when taking the LCR measurements.) Repeat this procedure with the output short- circuited ($E_2 = 0V$) to determine Z_{ABS} . Be sure to attach a sheet containing all your measurements and calculations to the back of the lab.				
	ZABO(Osc) =	Ω	$\mathbf{Z}_{ABO(LCR)} = $	Ω	
	$Z_{ABS(Osc)} =$	Ω	$\mathbf{Z}_{ABS(LCR)} = $	Ω	
3.	Move the voltage source to determine Z CDO.	to the output terminal	s. Make the nec	cessary accommodations and repeat step 2	
	$\mathbf{Z}_{\text{CDO}(\text{Osc})} =$	Ω	\mathbf{Z} CDO(LCR) =	Ω	
4.	Use these measurements from steps 2 and 3 to determine the mutual inductance M from both the oscilloscope measurements and the LCR measurements.				
	M (Osc) =	Н	M(LCR) =	Н	
5.	Compare the oscilloscope	e determined inductan	ce to the LCR 1	neter determined inductance.	
		$\mathbf{R}_{\mathrm{d}} = $		%	
Th	nis part of the procedure	will use only the LCI	R meter and th	e mutually linked inductors.	
6.	Connect terminal 2 to ter terminals 1 and 4) with t configuration (confirm co	minal 3. Measure and he LCR meter. Note to connection by the Dot N	l record $\mathbf{L}_{\mathbf{T}(+)}$ (t that \mathbf{L}_1 and \mathbf{L}_2 a Notation metho	he total effective inductance between re now connected in a <i>series-aiding</i> d).	
		$\mathbf{L}_{\mathbf{T}(+)} = \mathbf{L}_{\mathbf{T}(+)}$		Н	

7. Disconnect terminal 2 from terminal 3.

8. Connect terminal 2 to terminal 4. Measure and record $L_{T(-)}$ (the total effective inductance between terminals 1 and 3) with the LCR meter. Note that L_1 and L_2 are now connected in a *series-opposing* configuration (confirm connection by the Dot Notation method).

$$\mathbf{L}_{\mathbf{T}(-)} =$$
______H

9. Using the equation: $M_{12} = \frac{(L_{T(+)} - L_{T(-)})}{4}$, calculate the mutual inductance term M₁₂.

 $\mathbf{M}_{12} =$ _____ H

10. Compare this M_{12} value with the oscilloscope determined mutual inductance value found in step 4.

Rd = _____ %

11. Compare this M_{12} value with the LCR meter determined mutual inductance value found in step 4.

Results

1. Mutual inductance (as defined in the notes above) is a real number. Is this confirmed by the values obtained in step 4 and step 9 of the procedure? Explain any discrepancies.

Approved by (Instructor):	Date: