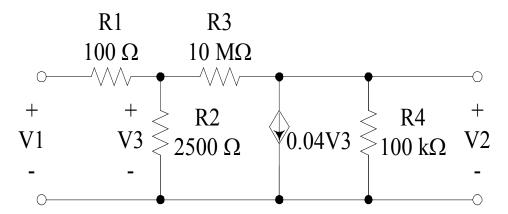
Name	Date	Lab Section
------	-------------	-------------

This is a calculation/simulation-oriented lab to be completed individually.

Problem 1

Determine z_{11} , y_{21} , and h_{21} for the circuit shown below, both by hand calculation (must show work) and Pspice simulation.


Problem 2

Add a capacitor, $C_2 = 6pF$, in parallel with R_2 , and a capacitor, $C_3 = 2pF$ in parallel with R_3 . Use Pspice to plot the magnitude of the voltage gain $|V_2/V_1|$ vs. frequency from 10Hz to 10MHz.

Results

Submit all of your results using this sheet as a cover. You report show include your hand calculations, a copy of your Pspice circuits, your Probe plots, and your results. Clarity and organization counts.

Remember: A probe plot that is not clearly marked with appropriate data points provides nothing of value to the reader. **Comment your work well**.

Review

Chapter 26 in your Boylestad textbook (available in a PDF file located on the course materials – ECET 2113 web page) will provide you with a good review of two-port networks. Note that the circuit of this laboratory exercise contains a voltage-controlled current source. A voltage-controlled current source is modeled in PSpice with a symbol of "G" (be sure to set the gain attribute of "G" to 0.04). Each chapter has a Pspice example included, and chapter 14 has a good example for Time Domain (Transient) analysis setup.