ECET 2111

Circuits II – Exam I Sample Problems

Instructions: Show all of your work… no credit will be given for illegible or illogical work, or for final answers that are not justified by the work shown. This exam is closed book except for one 8½"x11", single sheet of handwritten notes that may **NOT** contain any numerically-solved problems.

Note – Express all voltages and currents as phasors written in "polar" form. (I.e. – $100\angle 45^\circ$ or $100e^{\frac{\pi}{4}rad}$)

Problem #1) Given the following (steady-state) AC circuit:

 $f = 60 Hz$ $v(t) = 24 \cdot \sin(\omega \cdot t + 45^{\circ})$

 Express all of the loads in their impedance form and then determine the impedance seen by the source if the entire network is simplified into a single complex impedance expressed in "rectangular" form.

 $Z_{eq} = \underline{\Omega}$

Problem #2) Given the following (steady-state) AC circuit:

Determine the *source current* \widetilde{I}_s and the capacitor voltage \widetilde{V}_c , both in phasor form.

$$
\widetilde{I}_s = \underline{\hspace{1cm}} \underline{\hs
$$

Problem #3) Perform a steady-state AC analysis of the circuit shown below in order to determine the source current, $\tilde{\Gamma}_s$, and the voltage across the inductor, \tilde{V}_L , both in phasor form.

Problem #4) Given the following (steady-state) AC circuit:

Determine the *source current* \widetilde{I}_s and the *inductor voltage* \widetilde{V}_L , both in "polar" form.

$$
\widetilde{I}_s = \underline{\hspace{1cm}} \underline{\hs
$$

Problem #5) Given the following (steady-state) AC circuit:

- **a**) Determine the voltage \widetilde{V}_x across the (10-j10) Ω impedance using the **Superposition Theorem**.
- **b)** Write out the minimum set of equations required to perform a *Nodal Analysis* of the circuit and utilize the results in order to determine the voltage \widetilde{V}_x .
- **c)** Write out the minimum set of equations required to perform a *Mesh Analysis* of the circuit and utilize the results in order to determine the voltage \widetilde{V}_x .

Problem #6) Given the following circuit:

- **a)** Determine the *Thevenin's Equivalent Circuit* parameters for the circuit shown above with respect to terminals "T" and "H".
- **b)** If an arbitrary impedance Z_L is connected between terminals "T" and "H", determine the value of Z_L , expressed in rectangular form $(Z_L = R_L + jX_L)$ that will result in maximum power being transferred from the circuit to the load.
- **c)** If the load impedance is constrained to be purely resistive $(Z_L = R_L)$, determine the value of Z_L that will result in maximum power being transferred from the circuit to the load.

Problem #7) Given the circuit shown below:

- **a)** Write out the minimum set of equations required to perform a *Nodal Analysis* of the network. If you assign an "unknown" node voltage, utilize the numbers provided in the figure. $(I.e. - \tilde{V}_1)$
- **b)** Write out the minimum set of equations required to perform a *Mesh Analysis* of the network. If you assign an "unknown" mesh current, utilize the numbers provided in the figure. $(I.e. - \tilde{I}_1)$

Problem #8) Given the following AC circuit:

- **a)** Write out the minimum set of node equations required to perform a *Nodal Analysis* of the circuit.
- **b)** Write out the minimum set of mesh equations required to perform a *Mesh Analysis* of the circuit.
- **c)** Solve for the voltage V_3 \widetilde{V}_3 and the current \widetilde{I}_1 **using the Superposition Theorem.**

Problem T/F) Specify whether each of the statements are **TRUE** or **FALSE**.

1)
$$
Z_{eq} = 59.7 - j21.5 \Omega
$$

- **2)** $\widetilde{V}_c = 17.0 \angle 15.1^\circ$ *volts* $\widetilde{I}_s = 0.3 \angle 56.5^\circ$ amps
- **3)** $\widetilde{I}_s = 0.14\angle 53.76^\circ$ amps $\widetilde{V}_L = 4.12 \angle 65.7^\circ$ *volts*
- **4)** $\widetilde{I}_s = 1.455 \angle -59.04^{\circ}$ amps $\widetilde{V}_L = 46.02 \angle 12.53^{\circ}$ volts

$$
5a) \qquad \widetilde{V}_x = 70.6\angle -76.3^\circ \text{ volts}
$$

b)
$$
\frac{\widetilde{V}_A - 120\angle 0^{\circ}}{30 + j40} + \frac{\widetilde{V}_A - 0}{10 - j10} + \frac{\widetilde{V}_A - 60\angle -30^{\circ}}{j20} = 0 \qquad \rightarrow \qquad \widetilde{V}_A = 70.6\angle -76.3^{\circ} \text{ volts}
$$

__

__

__

$$
\begin{aligned}\n\text{(10- j10)} \cdot \widetilde{I}_A + (30 + j40) \cdot \widetilde{I}_A - (10 - j10) \cdot \widetilde{I}_B &= 120 \angle 0^\circ \\
&- (10 - j10) \cdot \widetilde{I}_A + (10 - j10) \cdot \widetilde{I}_B + (j20) \cdot \widetilde{I}_B &= -60 \angle -30^\circ\n\end{aligned}\n\qquad\n\begin{aligned}\n\widetilde{V}_x &= \widetilde{I}_x \cdot Z_3 = \left(\widetilde{I}_A - \widetilde{I}_B \right) \cdot Z_3\n\end{aligned}
$$

__

6a) $\widetilde{V}_{TH} = 18.1 \angle -33.8^{\circ}$ volts $Z_{TH} = 16.35 + 15.57 \Omega$

b)
$$
Z_L = R_L + jX_L = Z_{TH}^* = 16.35 - 15.57 \Omega
$$

c)
$$
Z_L = R_L = |Z_{TH}| = \sqrt{R_{TH}^2 + X_{TH}^2} = 22.6 \,\Omega
$$

7a) Node 1: Unknown Voltage Assigned Variable \widetilde{V}_1 Node 2: Known Voltage \rightarrow $\widetilde{V}_2 = \widetilde{V}_2$ Node 3: Known Voltage (if node 4 is assigned variable \widetilde{V}_4) $\rightarrow \widetilde{V}_3 = \widetilde{V}_4 + \widetilde{V}_B$ Node 4: Unknown Voltage Assigned Variable \widetilde{V}_4

Node 1 Eqn:

\n
$$
\frac{\widetilde{V}_1 - \widetilde{V}_A}{Z_A + Z_B} + \frac{\widetilde{V}_1 - \widetilde{V}_3}{Z_D} + \left(-\widetilde{I}_C\right) = 0
$$
\n**Super Node 3+4 Eqn:**

\n
$$
\frac{\left(\widetilde{V}_4 + \widetilde{V}_B\right) - \widetilde{V}_1}{Z_D} + \frac{\left(\widetilde{V}_4 + \widetilde{V}_B\right) - \widetilde{V}_A}{Z_C} + \frac{\left(\widetilde{V}_4 + \widetilde{V}_B\right) - 0}{Z_E} + \frac{\widetilde{V}_4 - 0}{Z_F} + \widetilde{I}_C = 0
$$

7b) Mesh 1: Unknown Current Assigned Variable \widetilde{I}_1 Mesh 2: Unknown Current Assigned Variable I_3 ~ *I* Mesh 3: Known Current \rightarrow $\widetilde{I}_3 = -\widetilde{I}_C$ Mesh 4: Unknown Current Assigned Variable \widetilde{I}_4 **Mesh 1 Eqn:** $(Z_C + Z_F) \cdot \widetilde{I}_1 - (Z_C) \cdot \widetilde{I}_2 - (Z_F) \cdot \widetilde{I}_4 = \widetilde{V}_4$ **Mesh 2 Eqn:** $-(Z_c) \cdot \widetilde{I}_1 + (Z_A + Z_B + Z_C + Z_D) \cdot \widetilde{I}_2 = (Z_D) \cdot (-\widetilde{I}_C)$ **Mesh 4 Eqn:** $-(Z_E)\cdot \widetilde{I}_1 + (Z_E + Z_E)\cdot \widetilde{I}_4 = -\widetilde{V}_B$

__

8a) If bottom node grounded and top node assigned variable V_3 \widetilde{V}_3 : $(-2\angle 90^{\circ}) = 0$ 200 $\widetilde{V}_3 - 0$ 200 $\widetilde{V}_3 - 0$ 200 $\frac{\widetilde{V}_3 - 120 \angle 0^{\circ}}{200} + \frac{\widetilde{V}_3 - 0}{-j200} + \frac{\widetilde{V}_3 - 0}{200} + (-2 \angle 90^{\circ}) =$ *j* $V_3 - 120 \angle 0^{\circ}$ *V* **b**) Note: Mesh Current #3 is defined by the source \widetilde{I}_B \rightarrow $\widetilde{I}_3 = -\widetilde{I}_B$ **Mesh 1 Eqn:** $(200 - j200) \cdot \widetilde{I}_1 - (-j200) \cdot \widetilde{I}_2 = \widetilde{V}_A$ **Mesh 2 Eqn:** $-(-j200)\cdot \widetilde{I}_1 + (200 - j200)\cdot \widetilde{I}_2 - (-j200)\cdot (-\widetilde{I}_R) = 0$ **c)** Source A ON: $\widetilde{V}_{3A} = \widetilde{I}_{1A} =$ **Source B ON:** $\widetilde{V}_{3B} = \widetilde{I}_{1B} =$ **Actual Values:** $\widetilde{V}_3 = \widetilde{I}_1 =$ **___**

Answers to True/False Questions

True/False) Specify whether each of the statements are **TRUE** or **FALSE**.

