
1

ECET 4530
Industrial Motor Control

Introduction to
Ladder Logic Programming I

(in the RSLogix environment)

Ladder Logic is one of many different languages* that can be
utilized when programming a PLC.

Ladder Logic Programming

Ladder Logic programs take the form
of a Ladder Diagram, the contents
and structure of which defines the
PLC’s operation.

* – other languages include Function Block Diagram (FBD), Instruction List (IL), Structured Text (ST), Sequential Function Chart (SFC),
Continuous Function Chart (CFC), as well as high-level programming languages like Automation Basic and C++.

A Graphical User Interface (GUI) is
typically utilized in order to provide a simple

drag-and-drop method for creation of the
ladder diagram.

1

2

2

This presentation on Ladder Logic Programming will begin by
introducing the overall structure of a Ladder Diagram.

Presentation Format – PPT I

Included within the introduction is a
brief discussion on the general types
of Instructions that will appear within
a Ladder Diagram, and the overall
flow of the program as it is executed.

Several commonly used Instructions will
then be discussed in detail, including
both the format of the instructions
and their operation when utilized
within a Ladder Logic Program. Each of the objects shown in

this ladder is an Instruction.

The second part of this presentation will focus on the practical
implementation of Ladder Logic Programming in order to
control the operation of a PLC.

The method for linking the operation of the PLC’s Input and
Output Ports to the operation of the Instructions within a
Ladder Diagram will first be presented, after which several

basic control system tasks
will be implemented with
the use of Ladder Logic
Programming.

Presentation Format – PPT II

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

A
C

 D
C

 O
U

T

1769-OW16

RELAY

V1

6

4

2

0

7

5

3

1

15

13

11

9

14

12

10

8

V2

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

24VDC Snk/Src

D
C
 IN

P
U

T

1769-IQ16

6

4

2

0

7

5

3

1

15

13

11

9

14

12

10

8

COM2 C
H

A
N

N
EL

 0

 E
TH

ER
N

ET
 /

IP
 --

Compact Logix L32E

 C
P

U
 -

I/O
OK

DCH0

RUN
FORCE

BATT

RUN REM PROG

MS NS
LNK CF

Allen-Bradley CompactLogix PLC

3

4

3

RSLogix 5000* is a platform developed by Rockwell Software
for the programming of Allen-Bradley PLCs.

RSLogix 5000 (v.21) is shown in this presentation since we will
utilize that software to program the PLCs in the lab.

RSLogix/Studio 5000

* – Studio 5000 is the new version of the RSLogix platform that was developed to support PLCs with multi-core processors.
Although this presentation discusses RSLogix 5000, the contents also applies to the Studio 5000 platform.

Note that Ladder Logic is not
exclusive to the RSLogix platform.

It is a standardized programming
language (IEC 61131-3) that has been

adopted by all PLC manufacturers
because of its structural similarity to

relay-logic-based control circuits.

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

A
C

 D
C

 O
U

T

1769-OW16

RELAY

V1

6

4

2

0

7

5

3

1

15

13

11

9

14

12

10

8

V2

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

24VDC Snk/Src

D
C
 IN

P
U

T

1769-IQ16

6

4

2

0

7

5

3

1

15

13

11

9

14

12

10

8

COM2 C
H

A
N

N
EL

 0

 E
TH

ER
N

ET
 /

IP
 --

Compact Logix L32E

 C
P

U
 -

I/O
OK

DCH0

RUN
FORCE

BATT

RUN REM PROG

MS NS
LNK CF

RSLogix 5000 Software Platform

(Part A)

Ladder Diagrams

Layout, Instruction Types,
Evaluation, and Order of Execution

5

6

4

Ladder Diagrams are graphical representations of a ladder
logic program.

They are named such because of their ladder-like appearance,
with two vertical Side-Rails and multiple horizontal Rungs.

Ladder Diagrams

Rungs

One Rung

Side-Rails

The Rungs of the Ladder Diagram contain multiple Instructions
that, when combined together, can provide the function of one
or more lines of code in a text-based programming language.

For example, the function

let C=1 if (A=1 and B=0) else let C=0

can be implemented using either Ladder-Logic or C++ as:

Ladder Diagrams – Rungs

If (A == 1 && B == 0) {
C = 1

}
else {

C = 0
}Ladder Logic Rung

C++ If-Else Statement

7

8

5

Ladder Logic Instructions can be separated into two primary
categories:

◦ Output Instructions

◦ Logic (Input) Instructions

Ladder Logic Instructions

Logic
Instructions

One Output
Instruction

Output
Instructions

One Logic
Instruction

Output Instructions perform a task.

The task performed may be simple or complex depending on
the specific instruction, such as:

 Changing the Value of a Number Stored in Memory

 Turning ON or OFF one of the PLC’s Output Ports

 Operating as a Timer or a Counter

 Energizing or Changing the Output Frequency of a VFD

Output Instructions

Output
Instructions

9

10

6

Output Instructions perform a task.

The task performed may be simple or complex depending on
the specific instruction, such as:

 Changing the Value of a Number Stored in Memory

 Turning ON or OFF one of the PLC’s Output Ports

 Operating as a Timer or a Counter

 Energizing or Changing the Output Frequency of a VFD

Output Instructions

Note that all of these tasks involve manipulating the value of numbers
that are stored in the memory of either the PLC or an external device.

Logic Instructions provide the functional logic that controls
the operation of the Output Instructions.

A Logic Instruction takes on either a TRUE or a FALSE state
depending on the current state of its associated parameters.

Logic Instructions

Logic
Instructions

In general, the “associated parameters” are one or more values stored in
specific memory locations that are directly linked to a specific logic instruction.

11

12

7

Each rung must have at least one Output Instruction.

An Output Instruction must occupy the right-most position*

on the rung.

Multiple Output Instruction may be placed in-series and/or
in-parallel on the same rung.

Multiple Logic Instructions may be placed in-series and/or
in-parallel on the same rung.

Each rung is not required to have any Logic Instructions.

Rung Requirements

* – If multiple Output Instructions are placed on the same rung, Logic Instructions may be placed between those instructions provided that the right-most
position on the rung is occupied by an Output Instruction. Note that rungs configured in this manner will not be covered in this presentation.

Rung Condition is a TRUE/FALSE logic state that is based on
the state and placement of a rung’s Logic Instructions and
whether or not those instructions provide at least one path
through Logic Instructions that are all TRUE, beginning
from the left side-rail and progressing to the right.

It is actually the Rung Condition that governs the operation
of any Output Instructions located on a specific rung.

Rung Condition

RUNG CONDITION ≡ ?TRUE or FALSE ?

a
A
a

Output
Instruction

13

14

8

An Output Instruction experiences a TRUE Rung Condition
when the rung’s Logic Instructions provide a “TRUE path”
from the left-hand side-rail of the ladder to the left side of
the Output Instruction.

TRUE Rung Condition

TRUE RUNG CONDITION ≡ TRUETRUE

a
A
a

Output
Instruction

Green bars are often used to denote TRUE
states for individual Logic Instructions

An Output Instruction experiences a FALSE Rung Condition
when the rung’s Logic Instructions prevent a “TRUE path”
from the left-hand side-rail of the ladder to the left side of
the Output Instruction.

FALSE Rung Condition

TRUE
FALSE

RUNG CONDITION ≡ FALSE

a
A
a

Output
Instruction

The absence of a green bar denotes a FALSE
state for individual Logic Instructions

15

16

9

Note that the Logic Instructions placed on a rung may offer
more than one potential path from the left-hand rail to an
Output Instruction.

As long as at least one “TRUE path” exists, the Rung Condition
for an Output Instruction is considered to be TRUE.

Rung Condition

TRUE
FALSE

a
A
a

Output
Instruction

TRUE RUNG CONDITION ≡ TRUE

TRUE

When determining the Rung Condition, a rung is assumed to
begin with a TRUE logic state at the left side-rail.

Because of this, a rung with no Logic Instructions will always
return a TRUE Rung Condition.

Empty Rung Condition

RUNG CONDITION ≡ TRUE

a
A
a

Output
Instruction

TRUE

17

18

10

Rung Condition is not affected by an Output Instruction when
progressing from left-to-right across a specific rung.

Thus, if a rung contains multiple Output Instructions, then:

the Rung Condition for the left-most Output Instruction
is determined first and the operation that instruction is
completed, after which

the process repeats for each additional Output Instruction
on the rung until the right side-rail is reached.

Rung Condition Evaluation Order

Even if the operation of an Output Instruction would change
the state of the previously-evaluated Logic Instructions,
those Logic Instructions will not be re-evaluated and the
previously-determined Rung Condition (to the left) will
remain unchanged until the next time the rung is executed.

On the other hand, an Output Instruction may affect the state
of any Logic Instructions that are placed to its right on a
rung, in-turn possibly affecting the Rung Condition that is
experienced by any additional Output Instructions that are
also placed to its right*.

Rung Condition Evaluation Order

* – This is a complex situation that will not be covered in this presentation.

19

20

11

When a PLC is switched to RUN mode*, the controller executes
its ladder sequentially from top (Rung 0) to bottom (End), in
the order that the rungs appear within the diagram.

Ladder Logic Program Execution

Program
Execution

* – The PLC has two primary modes of operation, PROGRAM and RUN. When switched
to PROGRAM mode, the controller stops executing its Ladder Logic program.

When the controller reaches the End rung, it jumps back to
the top of the ladder (Rung 0) and the process begins again.

The controller will repetitively keep stepping through the
ladder as long as the PLC remains in RUN mode.

Ladder Logic Program Execution

Program
Execution

re
pe

at

21

22

12

Individual Rung Execution
Thus, beginning with Rung 0, the controller:

 Determines the Rung-Condition based on the state of the
rung’s Logic Instructions, and

 Completes any required tasks based on the Rung-Condition
and the Output Instruction(s) on that rung.

Program
Execution

Once the controller completes the execution of a rung, it then
moves to and executes the next rung by determining the
Rung Condition on that rung and then applying the results
to that rung’s Output Instruction(s).

Ladder Diagram Order of Execution

Program
Execution

23

24

13

Although the execution of a rung may affect the state of the
Logic Instructions on any previously-executed rungs, those
changes are not acted upon until those rungs are re-executed.

Ladder Diagram Order of Execution

Program
Execution

I.e. – Once executed, a rung will not be re-evaluated until after the entire ladder has
been executed and the controller sequentially steps through to that rung again.

Note that, if the PLC transitions from PROGRAM RUN mode
or if the PLC powers up in RUN mode, the first (initial) scan
of the ladder diagram is executed in PRESCAN mode, during
which all Logic Instructions return a FALSE state, in-turn
resulting in all FALSE Rung Conditions.

PRESCAN Mode

Program
Execution
PreScan
(Initial Scan)

FALSE

FALSE

FALSE

FALSE

FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

25

26

14

Thus, for the first scan of the ladder, the operation of every
Output Instruction is based upon a FALSE Rung Condition.

The significance of PRESCAN mode will not be apparent until
the detailed operation of several Instructions is understood.

PRESCAN Mode

Program
Execution
PreScan
(Initial Scan)

FALSE

FALSE

FALSE

FALSE

FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

RUNG CONDITION ≡ FALSE

(Part B)

Ladder-Logic Instructions

Detailed Operation
and Examples

27

28

15

The detailed operation of three, commonly used, Ladder Logic
Instructions will now be presented:

the Examine if Closed (XIC) instruction,

the Examine if Open (XIO) instruction, and

the Output Energize (OTE) instruction.

Ladder Logic Instructions

Note – an analogy is often made between the look/operation of these instructions and that
of a relay’s Normally-Open (NO) contact, Normally-Closed (NC) contact, and Field Coil.

Although this analogy may be utilized during the associated lecture for this material,
the analogy will NOT be discussed within this presentation because it can lead to several

common misconceptions regarding their operation within a Ladder Diagram; instead, they
will always be presented and discussed as “Instructions within a Ladder Logic Program”.

Note that the icon shown in this presentation for a various
instruction will be the version displayed within the RSLogix
(Allen-Bradley / Rockwell Software) environment.

Although other manufacturers (Siemens, Automation Direct, etc.)
may use different icons, the overall operation of the various
instructions should be consistent across the various platforms.

Icons Used for Ladder Instructions

Shown below are some of the various Icons utilized for an “On-Delay Timer” in a Ladder Diagram:

RSLogix (Allen-Bradley) Siemens Automation Direct

29

30

16

The XIC (Examine If Closed) instruction:

is a Logic Instruction that takes on either a TRUE or FALSE
state depending on the value stored in a bit of memory.

But, in order to define the specific bit of memory upon which
the XIC’s state is based, the XIC must be assigned a Tag.

Logic Instructions – XIC

An XIC is a Boolean instruction because it can only take on one of two states, TRUE or FALSE.

?

Tags contain information that identifies and characterizes
data stored in memory, allowing that data to be linked to
the operation of one or more specific instructions.

For example, if the following XIC is assigned tag “A”:

then Tag “A” identifies a specific bit in memory upon which
this XIC’s state is based.

Tags

Tag “A” is a Boolean tag because it addresses a single bit that can only take on one of two values, 0 or 1.

TagA The tag is displayed
immediately above the
icon for the instruction.

31

32

17

If tag “A” is assigned to the XIC (Examine If Closed) instruction:

then the logic state (TRUE or FALSE) of that instruction is
defined as follows:

When evaluated: If bit A=1, then XIC-ATRUE

If bit A=0, then XIC-AFALSE

Logic Instructions – XIC

(by the controller)

The XIC is TRUE when A=1.

A

The XIO (Examine If Open) Logic Instruction:

takes on the opposite state compared to that of an XIC.

If tag “B” is assigned to the XIO, then the logic state of this
instruction (TRUE or FALSE) is defined as follows:

When evaluated: If bit B = 0, then XIO-BTRUE

If bit B = 1, then XIO-BFALSE

Logic Instructions – XIO

B

(by the controller)

The XIO is TRUE when B≠1.

An XIO is also a
Boolean instruction.

33

34

18

When a PLC is in RUN mode and its ladder diagram is being
displayed (in real time) within the RSLogix environment:

 Instructions are always displayed by their standard icon

 The icons of Logic Instructions that return a TRUE state
are highlighted with a green-bar behind their icons.

Thus, given an XIC (), it will be displayed as follows by
the RSLogix software depending on its current logic state:

Instructions – Icons vs. Current State

(when the XIC is FALSE) (when the XIC is TRUE)

For example, given the bit values: A = 0 B = 0 C = 1
and the following rungs:

If displayed while the PLC is in RUN mode, then:

Rung-0: XIC-AFALSE, XIO-BTRUE

Rung-1: XIC-CTRUE, XIO-CFALSE

Instructions – Icons vs. Current State

The Green bars denote TRUE states.

35

36

19

The following Output Instruction is an OTE (Output Energize)
instruction that has been assigned tag “C”:

An OTE will either set or reset (store a 1 or 0 in) the bit identified
by its assigned tag based on the Rung Condition as follows:

If the Rung Condition is TRUE, then OTE-C sets bit C1

If the Rung Condition is FALSE, then OTE-C resets bit C0

Output Instructions – OTE

If a bit is “set”, it is changed to a one (1).
If a bit is “reset”, it is changed to a zero (0).

(when evaluated by the controller)

C

If the Rung-Condition for an OTE is TRUE, then the OTE will
set its assigned bit to 1.

Thus, given the bit values: A = 0 B = 0 C = 1
when the following rung is executed, both XIC-C and XIO-B
will be evaluated TRUE, resulting in a TRUE Rung Condition,
in-turn causing the OTE to set bit Y1.

OTE – TRUE Rung Condition

TRUE RUNG CONDITION ≡ TRUETRUE
Bit Y 1

While displayed in real-time,
a green bar behind a Boolean

output instruction denotes
that its assigned bit is a 1.

37

38

20

TRUE
FALSE

RUNG CONDITION ≡ FALSE
Bit X 0

If the Rung-Condition for an OTE is FALSE, then the OTE will
reset its assigned bit to 0.

Thus, given the bit values: A = 0 B = 0 C = 1
when the following rung is executed, both XIC-A will be
evaluated FALSE, resulting in a FALSE Rung Condition,
in-turn causing the OTE to reset bit X0.

OTE – FALSE Rung Condition

While displayed in real-time,
the absence of a green bar behind

a Boolean output instruction
denotes that its assigned bit is a 0.

Look closely at the following rung from a ladder diagram:

If bits A, B, and C are all zero (A=B=C=0) when the rung is
executed, XIC-B and XIC-C will both be evaluated FALSE,
resulting in a FALSE Rung Condition.

Since the Rung Condition is FALSE, OTE-C resets bit C0, and
since bit C=0, the results will be the same the next time the
rung is executed provided bit B remains zero (B =0).

OTE with Hold-In Example (Part 1)

P
ar

t
1

of
 H

ol
d

-I
n

 E
xa

m
p

le

Since bit C
was already a 0,
it isn’t changed.

RUNG CONDITION ≡ FALSE

39

40

21

Given the same rung, what if bit B changes to a one (B1) and
then the rung is executed again (assuming A = C = 0)?

Then, the next time the rung is executed, XIO-A and XIC-B will
both be evaluated TRUE, resulting in a TRUE Rung Condition,
and…

since the Rung Condition is now TRUE, OTE-C sets bit C1.

(continued on the next slide)

OTE with Hold-In Example (Part 2)
P

ar
t

2
of

 H
ol

d
-I

n
 E

xa
m

p
le

RUNG CONDITION ≡ TRUE

Note that, although bit C is now one (C =1), XIC-C is still
shown to be FALSE (no green bar).

This is to highlight the fact that, once the state of a specific
Logic Instruction is evaluated, it will not be re-evaluated
until the rung is executed again.

But, once the rung is executed again, assuming that A and B
remain unchanged, the rung will appear as:

OTE with Hold-In Example (Part 2)

P
ar

t
2

of
 H

ol
d

-I
n

 E
xa

m
p

le
 (

co
n

ti
n

u
ed

)

41

42

22

Now, given the current state of the rung (A =0, B =C = 1), what if
bit B resets (B0) and then the rung is executed again?

Although XIC-B now evaluates FALSE, XIO-A and XIC-C still
provide a TRUE path, maintaining the TRUE Rung Condition,
and…

since the Rung Condition stays TRUE, OTE-C keeps bit C set.

OTE with Hold-In Example (Part 3)
P

ar
t

3
of

 H
ol

d
-I

n
 E

xa
m

p
le

RUNG CONDITION ≡ TRUE

But, given the current state of the rung (A = B = 0, C=1), what if
bit A changes to a one (A1) and the rung is executed again?

The next time the rung executes, XIO-A will be evaluated FALSE,
resulting in a FALSE Rung Condition, and

since the Rung Condition is FALSE, OTE-C resets bit C0.

(continued on the next slide)

OTE with Hold-In Example (Part 4)

P
ar

t
4

of
 H

ol
d

-I
n

 E
xa

m
p

le

RUNG CONDITION ≡ FALSE

43

44

23

Note that, although C is now a zero (C = 0), XIC-C was still
shown to be TRUE (with a green bar).

This is also to highlight that the state of the Logic Instruction
is not re-evaluated until the rung is executed again.

But, if the rung is executed again and XIC-C is re-evaluated,
the rung will appear as (assuming A and B remain unchanged):

OTE with Hold-In Example (Part 4)
P

ar
t

4
of

 H
ol

d
-I

n
 E

xa
m

p
le

 (
co

n
ti

n
u

ed
)

And finally, what if bit A resets (A0) before the rung executes
again?

The next time the rung executes, XIO-A will be evaluated TRUE,
but the Rung Condition will remain FALSE .

Thus, the rung is back to the same overall state at that existed at
the beginning of this example.

OTE with Hold-In Example (Part 5)

P
ar

t
5

of
 H

ol
d

-I
n

 E
xa

m
p

le

RUNG CONDITION ≡ FALSE

45

46

24

Does the operation of the rung in this example remind you of
the operation of a basic stop-start motor controller?

This rung-structure is often used in a PLC-based control system
for which a “hold-in” function is required.

OTE with Hold-In Example (Analysis)
A

n
al

ys
is

 o
f

H
ol

d
-I

n
 E

xa
m

p
le M

M

Stop Start

The trick is to somehow associate the value of bit A with the state of a
“Stop” button, the value of bit B with the state of a “Start” button,

and the value of bit C with the state of a contactor’s field coil.

How this is done will be discussed in Part B of this presentation.

Although many programming tasks can be completed using
just the following three instructions:

the Examine if Closed (XIC) instruction,

the Examine if Open (XIO) instruction, and

the Output Energize (OTE) instruction.

a handful of other instructions will also be presented in
order to provide a solid foundation of Ladder Logic
knowledge upon which the required programming tasks
for a wide variety of PLC-based motor control systems
can be implemented.

Ladder Logic Instructions

47

48

25

OTL – Output Latch

An Output Latch (OTL) is an Output Instruction that
can set a bit (B1) but cannot reset a bit back to zero.

If the Rung-Condition is TRUE, then OTL-B sets* bit B1

If the Rung-Condition is FALSE, then OTL-B does nothing.

Output Latch (OTL)

(when evaluated by the controller)

B
L

* – It is often stated that an OTL “latches” a bit. The problem with this statement is that, in electronic circuits, a
latch is a device that “sets and holds” a voltage at a specific level. It is true that the OTL can “set” a bit, but
it doesn’t “hold” the bit at a value of one. Instead, it doesn’t have the ability to “reset” a bit, so even if the

Rung Condition returns FALSE, the bit will remain set until it is actively reset by another instruction.

Given the following rung that contains on OTL (Output Latch):

If bit A changes to a one (A= 1), then the next time that the
rung is executed, XIC-A will be evaluated TRUE, resulting
in a TRUE Rung Condition, and

since the Rung Condition is TRUE, OTL-B sets bit B1.

OTL Example

RUNG CONDITION ≡ TRUE

A green bar behind a
Boolean output instruction

denotes that its assigned
bit is a 1.

The absence of a green
bar behind a Boolean

output instruction denotes
that its assigned bit is a 0.

49

50

26

On the other hand, given the following rung:

If bit A resets (A= 0), then the next time that the rung is
executed, XIC-A will be evaluated FALSE, resulting in a
FALSE Rung Condition.

But, OTL-B does nothing when the Rung Condition is FALSE,
so bit B remains set (B=1).

OTL Example

RUNG CONDITION ≡ FALSE

OTU – Output Unlatch

An Output Unlatch (OTU) is an Output Instruction that
can reset a bit (B0) but cannot set a bit to a one.

If the Rung-Condition is TRUE, then OTU-B resets* bit B0

If the Rung-Condition is FALSE, then OTU-B does nothing.

Output Unlatch (OTU)

(when evaluated by the controller)

* – Note that the OTU resets a bit when the Rung Condition becomes TRUE. On the other hand, an OTE resets a
bit when the Rung Condition becomes FALSE. This is a critical distinction between the abilities of OTUs

and OTEs to reset a bit, and often provides a challenge for beginning Ladder Logic programmers.

U
B

51

52

27

Given a rung that contains on OTU (Output Unlatch) (A = 0, B=1):

If bit A changes to a one (A= 1), then the next time that the
rung is executed, XIC-A will be evaluated TRUE, resulting in
a TRUE Rung Condition, and

since the Rung Condition is TRUE, OTU-B resets bit B 0.

OTU Example

RUNG CONDITION ≡ TRUE

Given the same rung when A=1 and B=0:

If bit A resets (A= 0), then the next time that the rung is
executed, XIC-A will be evaluated FALSE, resulting in a
FALSE Rung Condition.

But, OTU-B does nothing when the Rung Condition is FALSE,
so bit B remains reset (B=0).

OTU Example

RUNG CONDITION ≡ FALSE

53

54

28

TON – On-Delay Timer

The On-Delay Timer (TON) is an Output Instruction that
functions as a “non-retentive” timer.

A non-retentive timer is a timer that does not retain its
count (accumulator value) if the timer is disabled.
(I.e. – the timer resets to its initial conditions when it is disabled)

On-Delay Timer (TON)

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – On-Delay Timer

When a Base Tag is created for the TON, the name of
which appears in the Timer field, several sub-Tags are
automatically created by the RSLogix software:

The sub-Tags include:

Base_Tag.PRE Base_Tag.EN Base_Tag.TT

Base_Tag.ACC Base_Tag.DN

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – Base Tag & Sub-Tags

55

56

29

TON – On-Delay Timer

In addition to the Timer field that contains the Base Tag name,
there are two user-defined fields shown in the icon:

 Preset – Contains the time-delay value (specified in msec)
up to which the TON will count.

 Accum – Contains the initial time value (also in msec).

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – Preset & Accumulator

Value stored in the memory location
identified by Base_Tag.PRE

Value stored in the memory location
identified by Base_Tag.ACC

Note that the Accum field displays the
current value stored in the accumulator

when viewed “online” (in real time).

(.PRE)

(.ACC)

TON – On-Delay Timer

Three sub-Tags characterize the TON’s operational state:

 Base_Tag.EN – The .EN (Enable) bit is set to 1 when the TON is
enabled and reset to 0 when it’s disabled.

 Base_Tag.DN – The .DN (Done) bit is set to 1 when the Accum
equals the Preset, otherwise it’s reset to 0.

 Base_Tag.TT – The .TT (Time Transitioning) bit is set to 1 when the
TON is actively counting, otherwise it’s reset to 0.

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – Operational State Bits

The .TT bit is not shown
on the TON icon

57

58

30

TON – On-Delay Timer

The following information can be found by using the
Help tab within the RSLogix 5000 software:

TON – Documentation

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – On-Delay Timer

The TON is “enabled” when its Rung Condition is TRUE.

Once enabled, its Enable bit is set (.EN1) and the TON
begins “actively” incrementing (accumulating time).

Note that, if the Rung Condition goes FALSE, the TON is
disabled, causing its accumulator to return to its initial
value (the default is 0) and the Enable bit to reset (.EN0).

TON – Detailed Operation

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

59

60

31

TON – On-Delay Timer

As long as the TON remains enabled, its accumulator will
continue incrementing until it reaches the Preset value.

Note that, while the TON is “actively” accumulating time,
the Time Transitioning bit will be set (.TT1).

But, if the TON is not accumulating time, either because
it’s disabled or its accumulator has reached the Preset
value, then the .TT bit will be reset (.TT0).

TON – Detailed Operation

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

TON – On-Delay Timer

Once the TON’s accumulator reaches the Preset value, it
will stop incrementing and the Accum value will remain
equal to the Preset value as long as the timer is enabled.

Additionally, as long as .ACC = .PRE, the timer’s Done bit
will be set (.DN1).

But, if for any reason .ACC ≠ .PRE, such as the timer being
disabled or reset, the Done bit will be reset (.DN0).

TON – Detailed Operation

TON
Timer On Delay
Timer ?
Preset ?
Accum ?

(DN)
(EN)

61

62

32

Given the TON that has been placed on a rung with XIC-A:

If the timer is configured as follows:
the name of the Base Tag is “LightTimer”,
the Preset value is 60,000 (60,000msec = 60 sec), and
the initial Accum value is 0.

describe, in detail:
1) the timer’s initial conditions while bit A= 0,
2) the operation of the timer when bit A is set (A1), and
3) the operation of the timer if bit A is reset (A0).

TON Example

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

(DN)
(EN)

A

Given the TON that has been placed on a rung with XIC-A:

If bit A is initially zero (A=0), then:
• XIC-A ≡ FALSE and the Rung Condition is FALSE, and
• the TON is disabled.

Since the timer is disabled:
• the status bits Enable, Time Transitioning, and Done

will all be zero (.EN = 0, .TT = 0, .DN = 0), and
• the accumulator value will remain at zero (.ACC = 0).

TON Example – Initial Conditions

LightTimer.EN = 0
LightTimer.TT = 0
LightTimer.DN = 0

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

(DN)
(EN)

A

63

64

33

Given the TON that has been placed on a rung with XIC-A:

If bit A1, then the next time the rung is executed, XIC-A will
be evaluated TRUE, making the Rung Condition TRUE, and
the TON will be enabled.

When the timer is enabled:
• the Enable bit will be set (.EN 1),
• the accumulator will begin incrementing, and
• the Time Transitioning bit will be set (.TT 1).

TON Example – Timer Enabled

LightTimer.EN = 1
LightTimer.TT = 1
LightTimer.DN = 0

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 2377

(DN)
(EN)

A

Given the TON that has been placed on a rung with XIC-A:

As long as the TON remains enabled and the Accum value is
less than the Preset value (.ACC < 60,000), then accumulator
will keep incrementing until it reaches the Preset value.

Thus, while the accumulator is incrementing:
• the Enable bit will remain set (.EN = 1), and
• the Time Transitioning bit will remain set (.TT = 1).

TON Example – Time Transitioning

LightTimer.EN = 1
LightTimer.TT = 1
LightTimer.DN = 0

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 46377

(DN)
(EN)

A

65

66

34

The timer will remain in this “done” state until it is either disabled
(i.e. – the Rung Condition goes FALSE) or reset by a RES instruction.

Given the TON that has been placed on a rung with XIC-A:

When the Accum value reaches the Preset value (.ACC =60,000),
which will occur 60 seconds after the timer is enabled:

• the accumulator stops incrementing and remains at 60,000,
• the Enable bit will remain set (.EN = 1),
• the Time Transitioning bit will reset (.TT 0), and
• the Done bit will be set (.DN 1).

TON Example – Timer Done

LightTimer.EN = 1
LightTimer.TT = 0
LightTimer.DN = 1

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 60000

(DN)
(EN)

A

Given the TON that has been placed on a rung with XIC-A:

At any point in time, if bit A0, then the next time the rung is
executed, XIC-A will be evaluated FALSE, making the Rung
Condition FALSE, and the TON will be disabled.

If the timer is disabled:
• the Enable bit will be reset (.EN 0),
• the accumulator will reset back to its initial value,
• the Done bit will be reset (.DN 0), and
• the Time Transitioning bit will be reset (.TT 0) if it was set.

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

(DN)
(EN)

A

TON Example – Timer Done

LightTimer.EN = 0
LightTimer.TT = 0
LightTimer.DN = 0

67

68

35

RES – Reset

The Reset instruction is an Output Instruction that can
be used to reset the accumulator (.ACC) and the status
bits (.EN, .DN, .TT) of a timer or a counter.

The Base Tag (name) associated with either the timer or
counter that the RES instruction is being used to reset
must be placed in the Reset’s tag field.

RES
?

Reset (RES)

For example, a RES instruction could be used to reset
LightTimer’s accumulator if assigned the tag LightTimer.

RES – Reset

The operation of the Reset instruction is based upon the
Rung Condition on the rung.

When the rung is executed:

if the Rung Condition is TRUE, the RES will reset the
status bits of its assigned timer, and it will reset the
timer’s accumulator back to its initial value, or

if the Rung Condition is FALSE, the RES does nothing.

RES – Operation

B LightTimer
RES

69

70

36

Given the following rungs that contain a TON and a RES:

If bits A and B are initially both zero (A =B =0):
 the Rung Conditions for both rungs are FALSE

 the TON is disabled
 the RES instruction does nothing

RES Example (with TON)

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

A

B LightTimer

(EN)
(DN)

RES

Given the following rungs that contain a TON and a RES:

If bit A1 XIC-A ≡ TRUE

 the Rung Condition for the TON is TRUE

 TON-LightTimer is enabled
 the timer’s Enable bit is set (.EN1)
 the timer’s accumulator begins incrementing
 the timer’s Time Transitioning bit is set (.TT1)

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 152

A

B LightTimer

(EN)
(DN)

RES

RES Example – TON Enabled

The accumulator
begins incrementing
values as soon as the

timer is enabled.

71

72

37

Given the following rungs that contain a TON and a RES:

If bit B1 XIC-B ≡ TRUE

 the Rung Condition for the RES is TRUE

 the RES resets LightTimer’s status bits and it
resets LightTimer’s accumulator back to its
initial value

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

A

B LightTimer

(EN)
(DN)

RES

RES Example – TON Reset

Given the following rungs that contain a TON and a RES:

If bits A and B both remain set (A =B = 1):
 when the TON’s rung is executed, the timer’s .EN bit

will be set, and the timer will begin accumulating, but
 when the RES’s rung is executed, the RES timer will be

reset again, and the process will repeat.

RES Example – TON Reset

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 0

A

B LightTimer

(EN)
(DN)

RES

This can be confusing if the two rungs are not located next to each other in the ladder diagram
because it might appear as if the TON is disabled despite its TRUE Rung Condition.

Note that, since the software
used to display the state of the
ladder in “real-time” only has

a limited refresh rate,
the .EN bit may be highlighted
green as if set, unhighlighted
as if reset, or intermittently

change back and forth
depending on the actual layout

of the ladder diagram.

73

74

38

RES Example – TON re-Enabled

TON
Timer On Delay
Timer LightTimer
Preset 60000
Accum 4572

A

B LightTimer

(EN)
(DN)

RES

Given the following rungs that contain a TON and a RES:

If bit B0 XIC-B ≡ FALSE

 the Rung Condition for the RES is FALSE

 the RES does nothing
 since the Rung Condition for the timer is TRUE,

the next time the TON’s rung is executed, the
timer will be re-enabled, and its accumulator
will begin incrementing again.

There are many Logic Instructions available the return either
TRUE or FALSE states based on a comparison of two values.

These instructions include:

◦ GRT – Greater Than

◦ GEQ – Greater Than or Equal To

◦ LES – Less Than

◦ LEQ – Less Than or Equal To

◦ EQU – Equal To

◦ NEQ – Not Equal To

Numerical Comparison Instructions

Only the
Greater Than (GRT)

instruction is covered in
this presentation since
the other comparison-

type instructions
function similarly.

75

76

39

GRT – Greater Than

The GRT (Greater Than) instruction is used to compare
the values of two numbers, A and B.

 If A>B, then the GRT returns a TRUE state.

 If A≤B, then the GRT returns a FALSE state.

Greater Than (GRT)

GRT
Greater Than (A>B)
Source A ?
 ??
Source B ?
 ??

GRT – Greater Than

The GRT (Greater Than) instruction is used to compare
the values of two numbers, A and B.

 Source A – This field contains either a numerical value
for A or a tag name relating to the data
that contains the value for A.

 If the Source A field contains a tag name, the second
field shows the value currently identified by that tag.

GRT – Configuration

GRT
Greater Than (A>B)
Source A ?
 ??
Source B ?
 ??

77

78

40

GRT – Greater Than

The GRT (Greater Than) instruction is used to compare
the values of two numbers, A and B.

 Source A – This field contains either a numerical value
for A or a tag name relating to the data
that contains the value for A.

 If the Source A field contains a tag name, the field
immediately below Source A displays the value
currently stored in the tag assigned to Source A.

GRT – Configuration

GRT
Greater Than (A>B)
Source A ?
 ??
Source B ?
 ??

GRT – Greater Than

The GRT (Greater Than) instruction is used to compare
the values of two numbers, A and B.

 Source B – This field contains either a numerical value
for B or a tag name relating to the data
that contains the value for B.

 If the Source B field contains a tag name, the field
immediately below Source B displays the value
currently stored in the tag assigned to Source B.

GRT – Configuration

GRT
Greater Than (A>B)
Source A ?
 ??
Source B ?
 ??

79

80

41

The following GRT is configured to compare the value stored
in LightTimer’s accumulator to the number 20,000.

Thus, when the GRT is evaluated:

If LightTimer.ACC is ≤ 20000,
the GRT will return a FALSE state.

While LightTimer.ACC is > 20000,
the GRT will return a TRUE state.

GRT Example

GRT
Greater Than (A>B)
Source A LightTimer.ACC

 0
Source B 20000

GRT
Greater Than (A>B)
Source A LightTimer.ACC

 13294
Source B 20000

GRT
Greater Than (A>B)
Source A LightTimer.ACC

 27155
Source B 20000

Note that the value stored in
LightTimer’s accumulator is

displayed in the field immediately
below Source A as shown in the

following examples:

TON
Timer On Delay
Timer TimerA
Preset 10000
Accum 0

A

TimerA.DN

(EN)
(DN)

RES

What if you have a 10-second timer that, after it is “enabled”,
needs to count to 10 seconds and then automatically reset
back to zero and begin counting again, and will continue to
do so until it is “disabled”?

To perform this task, the timer’s .DN bit can be utilized to trigger
a reset of the timer whenever the timer’s Accumulator reaches
the Preset value (i.e. – it is “done” counting).

Self-Repeating Timer Example

81

82

42

Given the following rungs that contain a TON and a RES:

If bit A is initially zero (A = 0):
 XIC-A ≡ FALSE

 the Rung Condition for the TON is FALSE

 the TON is disabled (and thus TimerA.EN = 0)
 XIC-TimerA ≡ FALSE

 the Rung Condition for the RES is FALSE

TON
Timer On Delay
Timer TimerA
Preset 10000
Accum 0

A

TimerA.DN

(EN)
(DN)

RES

Self-Repeating Timer Example

Timer initially Enabled

If bit A1 XIC-A ≡ TRUE

 the Rung Condition for the TON is TRUE

 TON-TimerA is enabled
 the timer’s Enable bit is set (.EN1)
 the timer’s accumulator begins incrementing
 the timer’s Time Transitioning bit is set (.TT1)

TON
Timer On Delay
Timer TimerA
Preset 10000
Accum 1328

A

TimerA.DN

(EN)
(DN)

RES

Self-Repeating Timer Example

83

84

43

TON
Timer On Delay
Timer TimerA
Preset 10000
Accum 10000

A

TimerA.DN

(EN)
(DN)

RES

Timer reaches its Preset Value

When TimerA.ACC increments to 10000:
 the timer’s Done bit is set (.DN1)

Note that, even though the .DN bit has been set, the state of
the XIC on the second rung will not change to TRUE until
the RES’s rung is executed again (after the .DN bit was set).

Self-Repeating Timer Example

Rung being
executed

Timer is Reset

The next time the RES’s rung is executed (after the .DN bit was set):
 XIC-TimerA.DN ≡ TRUE

 the Rung Condition for the RES is TRUE

 the RES resets TimerA’s status bits and it
resets TimerA’s accumulator back to its
initial value

(EN)
TON

Timer On Delay
Timer TimerA
Preset 10000
Accum 0

A

TimerA.DN

(DN)

RES

Self-Repeating Timer Example

Rung being
executed

Although the TimerA.DN
bit was reset, the XIC on

the second rung will
remain TRUE until that
rung is executed again.

85

86

44

Timer is re-Enabled

The next time the TON’s rung is executed (after the TON was reset):
 XIC-A ≡ TRUE (it never changed to FALSE)
 the Rung Condition for the TON is still TRUE

 TON-TimerA is re-enabled, its .EN bit is set,
its accumulator begins incrementing again,
and its .TT bit is set

Self-Repeating Timer Example

Rung being
executed

(EN)
TON

Timer On Delay
Timer TimerA
Preset 10000
Accum 14

A

TimerA.DN

(DN)

RES

TON
Timer On Delay
Timer TimerA
Preset 10000
Accum 35

A

TimerA.DN

(EN)
(DN)

RES

After the Timer is re-Enabled

The next time the RES’s rung is executed (after the TON was reset):
 XIC-TimerA ≡ TRUE

 the Rung Condition for the RES is FALSE

 the RES does nothing

Self-Repeating Timer Example

Rung being
executed

As long as bit A remains set (A = 1), the TON will remain enabled and it will continue incrementing until
it’s “Done” again, at which time the RES will reset the timer again. This process will repeat indefinitely.

87

88

45

The CTU (Counter Up) is an Output Instruction whose function
is similar to that of the On-Delay Timer:

Other Instructions – Counter Up (CTU)

The Counter Up (CTU) is useful for keeping track of the number of specific events that occur,
such as the number of items passing by an optical detector.

When the CTU’s rung-condition becomes TRUE, the CTU’s accumulator is incremented by one (1).

Note that, for the CTU to count up again, the CTU’s rung-condition
must first become FALSE and then TRUE again.

TOF – OFF Delay Timer

Off-Delay Timer (TOF)

The Off-Delay timer (TOF) works similar to the On-Delay timer (TON) except
that the TOF is enabled when its rung-condition becomes FALSE.

89

90

