ECET 4530

Industrial Motor Control

Relay Logic Example Problem

Introduction

The concept of relay logic involves the utilization of multiple relays that are wired together in a specific manner in order to create the interactive switching function that is required to provide the desired operational logic for a control circuit.

In addition to relays, relay logic circuits often incorporate a variety of other logic devices that also provide on/off switching functions, such as switches, pushbuttons and timers.

Introduction

This presentation provides a step-by-step analysis of the operation of a relay-logic control circuit that contains:

- Four control relays
- Three pushbuttons
- Five indicator lamps
- One single-position switch
upon which a series of pushbutton presses and releases will be preformed.

Introduction

But, instead of simply just reading through this presentation and trying to follow along with the analysis, it is suggested that the viewers of this presentation first attempt to predict the operation of the system step-by-step, and then utilize the analysis provided within to identify any points of confusion for which they might want to seek assistance.

Introduction

Note that a full-page version of the circuit is provided at the end of this presentation.

Viewers may find it useful to print several copies of the circuit, upon which they can make notations to help keep track of the state of each relay as the steps are performed.

Determine the state of the indicator lamps after each step is performed:

Step 1: Flip Power Switch ON
Step 2: Press PB-2
Step 3: Release PB-2
Step 4: Press PB-3
Step 5: Release PB-3
Step 6: Press PB-3 (2 $^{\text {nd }}$ Time)
Step 7: Release PB-3 ${ }_{\left(2^{\text {nd }}\right.}$ Time)
Step 8: Press PB-1
Step 9: Release PB-1
Step 10: Flip Power Switch OFF

Analysis Notes:

- Logic devices will always be shown in their normal positions.
- In order to identify the current state of each logic device, a green bar () will be placed behind a device if that device will allow the flow of current at a particular point in time, while a red bar (-) will be placed behind that device if it would prevent the flow of current.
- Since there is a delay between the time that a field coil is (de)energized and the time that its associated contacts actuate (drop-out), a change in the state of a relay's field coil will be shown as an independent event on one slide, after which the change of state of that relay's contacts will be shown on the next slide.
- To help identify which devices experience a change of state from slide to slide, a blue box (\quad) will be placed behind a device to denote a change of state compared to that displayed on the previous slide.
- After each step is performed and steady-state operation is achieved, the status of the indicator lamps will be summarized.

Step 1: Power Switch flipped ON

Attempt to predict the result before viewing the next slides.

Step 1: Power Switch flipped ON

Result: Green Light ON

No additional changes in the system

A light-blue background denotes that the state of that device changed from the previous slide to the current slide.
I.e. - The "Power Switch" was in the off position and the Green Light was OFF in the previous slide.

Step 2: PB-2 Pressed (and held in)

Attempt to predict the result before viewing the next slides.

Step 2: PB-2 Pressed (and held in)

Result: CR1 field coil

 is energized...The "..." denotes that there is a delay between the time when a field coil is (de)energized and the time that any additional events occur when its associated contacts actuate (drop-out).
I.e. - The CR1 field coil has been energized, but the CR1
contacts have yet to actuate; their actuation will be addressed in the next slide.

Step 3: PB-2 Released

Attempt to predict the result before viewing the next slides.

Step 3: PB-2 Released

Result: No additional changes in the system

Step 4: PB-3 Pressed (and held in)

Attempt to predict the result before viewing the next slides.

Step 4: PB-3 Pressed (and held in)

Result: Red Light ON
"and simultaneously" CR3 field coil is energized...

Step 4: PB-3 Pressed (continued) (and held in)

Result: After CR3 field coil is energized:

CR3 contacts change position

No additional changes in the system

Step 5: PB-3 Released

Attempt to predict the result before viewing the next slides.

Step 5: PB-3 Released

Result: Blue Light ON
CR2 field coil
is energized...

Step 5: PB-3 Released (continued)

Result: After CR2 field coil is energized:

CR2 contacts change position Red Light OFF CR3 field coil is de-energized...

Step 5: PB-3 Released (continued)

Result: After CR3 field coil is de-energized:

CR3 contacts change position White Light ON CR4 field coil is energized...

Step 5: PB-3 Released (continued)

Result: After CR4 field coil is energized:

CR4 contacts change position

No additional changes in the system

Step 6: PB-3 Pressed
(and held in $\mathbf{2}^{\text {nd }}$ time)

Attempt to predict the result before viewing the next slides.

Step 6: PB-3 Pressed (and held in $2^{\text {nd }}$ time)

Result: Red Light ON

CR3 field coil is energized...

Step 6: PB-3 Pressed
(continued) (and held in $2^{\text {nd }}$ time)

Result: After CR3 field coil is energized:

CR3 contacts change position Blue Light OFF CR2 field coil is de-energized...

Step 6: PB-3 Pressed
(continued) (and held in $2^{\text {nd }}$ time)

Result: After CR2 field coil is de-energized:

CR2 contacts change position

No additional changes in the system

Step 7: PB-3 Released (2 ${ }^{\text {nd }}$ time)

Attempt to predict the result before viewing the next slides.

Step 7: PB-3 Released ($2^{\text {nd }}$ time)

Result: Red Light OFF
CR3 field coil is de-energized...

Step 7: PB-3 Released (continued) (2 $2^{\text {nd }}$ time)

Result: After CR3 field coil is de-energized:

Step 7: PB-3 Released (continued) (2 $2^{\text {nd }}$ time)

Result: After CR4 field coil is de-energized:

CR4 contacts change position

No additional changes in the system

Step 8: PB-1 Pressed (and held in)

Attempt to predict the result before viewing the next slides.

Step 8: PB-1 Pressed (and held in)

Result: CR1 field coil is de-energized...

Step 8: PB-1 Pressed (continued) (and held in)

Result: After CR1 field coil is de-energized:

CR1 contacts change position Green Light ON

 Amber Light OFFNo additional changes in the system

Step 9: PB-1 Released

Attempt to predict the result before viewing the next slides.

Step 9: PB-1 Released

Result: No additional changes in the system

Step 10: Power Switch flipped OFF

Attempt to predict the result before viewing the next slides.

Step 10: Power Switch flipped OFF

Result: Green Light OFF

No additional changes in the system

