ECET 4530

Industrial Motor Control

Introduction to Ladder Diagrams

1

Ladder Diagrams

Ladder Diagrams are a special type of schematic diagram that are often used to depict the electric circuits of an industrial control system.

They are called "ladder" diagrams because they resemble a ladder, having two vertical rails and multiple horizontal rungs.

Of future interest:
A fundamental understanding of ladder diagrams will also be very useful later in the course when PLCs are introduced because
 PLCs are often programmed using "Ladder Logic", which is a graphical programming language that allows a programmer to graphically create the PLC's program by building a ladder structure that will closely resemble and have characteristics similar to the ladder diagrams that will be shown in this presentation.

Ladder Diagrams - Vertical Rails

The vertical rails of the ladder provide a common connection to the control system's supply of electric power (voltage source).

The rails are often labeled " $\underline{\mathbf{L}}_{1}$ " and " $\underline{\mathbf{L}}_{2}$ " where:

- L_{1} is connected to the energized (ungrounded) conductor from the source, and
- \mathbf{L}_{2} is connected to the grounded (neutral or negative) conductor from the source.

Although the control system requires a source of electric power in order to function, for simplicity's sake, the voltage source is often omitted from the ladder diagram, with the understanding that the proper voltage potential must exist across $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$.

3

Choice of Control System Voltage

The rated voltage of the control system devices must be compatible with the supply voltage, the exact choice of which can depend on many factors, including:

- Safety
 - Convenience/Availability
 - Component Size

Low-Voltage AC/DC - Newer, state-of-the-art control systems often utilize $\mathbf{2 4 V}_{\mathbf{D C}}$ In addition to being safer to operate and maintain, the physical size of many of the system's components decreases with decreasing supply voltage, allowing
 for a smaller-sized or more compact control panel.
$120 \mathrm{~V}_{\mathrm{AC}}$ - A large base of $\mathbf{1 2 0 V}$ systems already exist within industry. $120 \mathrm{~V}_{\mathrm{AC}}$ is readily available without the use either of a control transformer on an electronic supply. Additionally, the field coils of larger contactors often require higher supply voltages in order to minimize their current draw from the control system.

Ladder Diagrams - Horizontal Rungs

The horizontal rungs represent the individual circuits (potential closed-loop current paths) or functional elements of the control system.

A circuit on a typical rung contains at least one output device (load) along with one or more logic devices that control the flow of current on that rung.

Each rung must contain at least one output device because a rung without an output device could result in a short-circuit across the supply rails.

5

Output Devices

Output devices are the electric loads that are supplied by the various circuits that compose the rungs of the ladder.

When energized, an output device performs a specific task that is required as part of the overall system's operation.

Two output devices that are often found within the ladder diagram of a control system are:

- Field Coils
- Indicator Lamps

Field Coil of a contactor or a relay

Indicator Lamp

Logic Devices

A logic device is a device that, based on its operational state, will either permit or prevent the flow of current.

The fundamental logic device is a contact; either normally-open (NO) or normally-closed (NC), as found in a contactor or a relay.

Normally-Closed
(NC) Contact

Slight variations may exist in the symbols used to depict NO and NC contacts.

Contacts in Relays and Contactors

Note that contacts may be contained within a relay or a contactor, the field coil of which will also appear in the ladder diagram, or they may be contained within other devices such as limit switches, pressure sensors, proximity detectors, and optical detectors.

Although various devices contain contacts that can be utilized within a control system, the basic symbol for a contact may be reserved for those contained in relays and contactors.

Contacts in other Electrical Components

Contacts contained in other devices, especially those that are not actuated by energizing an output device on one of the rungs, such as the contact contained within either a pushbutton or a pressure switch, are often depicted by unique symbols that can help clarify their operation within the control system.

Both rungs are logically equivalent, but the function of the circuit depicted on the lower rung is easier to visualize, even without any visible identifiers (labels).
I.e. - a stop/start controller with the addition of a pressure switch that prevents operation if the pressure is too low.

9

Device Identifiers

An identifier (label) must be included with each device shown in the ladder diagram in order to identify the device and, if part of a larger piece of equipment that contains multiple devices, to associate or link their operation.

For example, given the control circuit to the right that contains two field coils:

The field coil and contacts that are contained within a control relay are all labeled CR1 in order to identify the contacts that actuate when field coil CR1 is energized, while field coil and contacts
 contained within the system's main contactor are all labeled $\underline{\mathbf{M}}$ to associate their operation.

Rung Operation

The operational state of an output device on a specific rung is determined by the conductive state of that rung's logic devices.

In other words, the load on a rung is energized when the rung's logic devices allow current to flow from the source, down rail \mathbf{L}_{1}, across the rung and through the load, and then back up rail $\mathbf{L}_{\mathbf{2}}$ to the source.

Note that the source that supplies rails \mathbf{L}_{1} and \mathbf{L}_{2} is not shown in the figure.

Rung Operation - Example

If the contacts on the following rung are in their normal positions, then field coil CR is de-energized because there is no conductive path for current to flow across the rung from rail $\mathbf{L}_{\mathbf{1}}$ to rail $\mathbf{L}_{\mathbf{2}}$.

Rung Operation - Logic Statement

Thus, the logic required to energize field coil CR is:

- contact W must be actuated (closed), and
- contact X must be in its normal (open) position, and
- either contact Y and/or contact Z must be actuated (closed).

Rung Operation - Logic Statement

The logic required to energize field coil CR can also be expressed as:

- contact W must be actuated (closed), and
- contact X must not be actuated (open), and
- either contact Y and/or contact Z must be actuated (closed).

Rung Operation - Logic Statement

The logic required to energize field coil CR can also be expressed as:

- field coil \mathbf{W} must be energized, and
- field coil X must not be energized, and
- either field coil \mathbf{Y} and/or field coil \mathbf{Z} must be energized.

Rung Operation - Logic Statement

The logic required to energize field coil CR can also be expressed as:

- field coil W must be energized, and
- field coil X must not be energized, and
- either field coil Y and/or field coil Z must be energized.

This can be expressed by the Boolean expression:

This Boolean expression is provided for informational purposes only.
You will not be required to express or interpret logic statements expressed in this manner

Basic Ladder Operation Example \#1

Given the ladder diagram to the right:

- rung- 0 contains a switch and the field coil of control relay CRA, and
- rung-1 contains a NO contact from control relay CRA and a blue light.

If the switch on rung-0 is initially open (ofF), then:

- field coil CRA will be de-energized, and the NO CRA contact on rung-1 will be open (i.e. - in its "normal" position), and
- since the CRA contact on rung- 1 is open, the blue light will be de-energized (OFF).

Basic Ladder Operation Example \#1

Given the ladder diagram to the right:

- rung-0 contains a switch and the field coil of control relay CRA, and
- rung-1 contains a NO contact from control relay CRA and a blue light.

But, if the switch on rung-0 closes (os), then:

- field coil CRA will be energized, causing the NO CRA contact on rung-1 to actuate closed, and
- when contact CRA closes, the blue light will be energized (ON).

Basic Ladder Operation Example \#2

But, what if the contact on rung-1 is replaced with a NC contact?

If the switch is open, then field coil CRA will be de-energized, the NC CRA contact will
 be closed (in its "normal" position), and the blue light will be $\mathbf{O N}$.

But, if the switch closes, then field coil CRA will be energized, the CRA contact will actuate open, and the blue light will be de-energized (OFF).

Sequential Rung Operations

When a field coil is (de)energized and its associated contacts actuate (dropout), those changes may cause other loads to become (de)energized, in-turn causing further (sequential) changes in the operational states of the various rungs in a ladder.

Note that, when the field coil of a relay or a contactor is energized, there is a time-delay before its contacts change state due to the time it takes for the electromagnet's field to build-up and for the armature to travel as it actuates the contacts.

And when a field coil is de-energized, there is a time-delay before its contacts change state due to the time it takes for the field to collapse and for the armature to travel as the contacts dropout.

Sequential Rung Operation Example

Given the ladder to the right, in which all of the contacts are originally in their normal positions and all of the field coils are initially de-energized...

Determine the series of events that will occur if the \mathbf{W} contacts are actuated closed.

Note that the specific means for actuating the W contacts, such as field coil W, is not shown in the figure.

Sequential Rung Operation Example

Sequential Rung Operation Example

When the CR3 contact is actuated closed, field coil CR2 will be energized.

Since there are no CR2 contacts shown in the figure, no further operations can be predicted.

Thus, when the \mathbf{W} contacts are actuated closed:

- field coil CR1 is energized and the CR1 contact actuates closed, after which
- field coil CR3 is energized and the CR3 contact actuates closed, after which
- field coil CR2 is energized.

Simultaneous Rung Operation

When contacts actuate or dropout simultaneously on multiple rungs, the loads on those rungs might also be energized or de-energized simultaneously.

For example, determine the events that will occur if the \mathbf{W} contacts are actuated closed in the following ladder:

Simultaneous Rung Operation

When the \mathbf{W} contacts are actuated (closed) while the \mathbf{X} and \mathbf{Y} contacts remain in their normal positions:

- field coils CR1 and CR3 will simultaneously be energized because conductive paths will simultaneously be created from rail $\mathbf{L}_{\mathbf{1}}$ to $\mathbf{L}_{\mathbf{2}}$ through both of those loads.

Multiple Output Devices on a Rung

Two (or more) loads may be connected in parallel on a single rung if their operation should always be based on the same conditional logic (i.e. - if they should always operate at the same time).

Multiple Output Devices on a Rung

Two (or more) loads should never be connected in series on a rung because the source voltage will be split between the loads, often causing one or both loads to fail to operate properly.

This is a common mistake that students often make when asked to modify or add components to an existing circuit, especially if the control circuit is not drawn as a ladder diagram!

Introduction to Ladder Diagrams

Part II

Instructional Note

Safety should always be the primary concern in an industrial setting.
Part II briefly introduces the concept of proper device placement based on the location of the control circuit's ground terminal, along with some of the safety issues that arise from improper placement of the devices.

Note - the overall concept System Grounding is beyond the scope of this course due to its complexity and far-reaching implications. In fact, despite its importance, the topic is rarely discussed within any electrical engineering curriculum.
Thus, Part II of this presentation in intended to provide the students with a glimpse into the field of grounding and to encourage further study of this important topic. But, since this is a single semester course and limited time is available to cover all of the required topics, lectures will not be provided for part II of this presentation.

Proper Device Placement on a Rung

Proper Device Placement

Output devices (loads) should be placed on the right-hand side of the rung, closest to the grounded rail \mathbf{L}_{2}.

All of the logic devices that govern the
 operation of the loads are then placed on the left-hand side of the load(s). A "chassis ground" is an electrical connection to the metal enclosure of an electrical device.

The metal enclosure is also connected to the earth ground of the power distribution system; in-turn holding the metallic enclosure at a $\mathbf{0}$-volt potential.
Since only one point in the circuit is connected to the chassis (metal enclosure),
the chassis ground does not provide a closed-loop path for current to flow during normal operation.

Proper Device Placement on a Rung

Proper Device Placement
Output devices (loads) should be placed on the right-hand side of the rung, closest to the grounded rail \mathbf{L}_{2}.

All of the logic devices that govern the operation of the loads are then placed

Device Placement on a Rung

Note that, under normal conditions, the exact placement of the devices on a rung will not affect the load's overall operation provided that the rung's operational logic is maintained.

Proper Device Placement

In either case, the load will be (de)energized when the switch is (opened) closed under normal conditions*.

* - in this case, normal conditions implies that all of the system's components are functioning properly and the there are no faults or other problems in the circuit.

Device Placement on a Rung

Note that, under normal conditions, the exact placement of the devices on a rung will not affect the load's overall operation provided that the rung's operational logic is maintained.

But, under abnormal conditions, such as during the occurrence of a electrical fault within the control system, improper placement poses a safety risk that can result in possible electrocution as well as unexpected or uncontrollable system operation.

Improper Device Placement

Proper Device Placement Example

Safe Operation Example

Under normal conditions, there will be no voltage potential at either of the load terminals while the switch is in the OFF (open) position.
 There is always a 0 -volt potential at the right-hand
terminal of the load since rail $\mathbf{L}_{\mathbf{2}}$ is grounded.
While the switch is OFF, a 0 -volt potential will also be present at the left-hand terminal of the load since the potential difference (voltage) across the load is zero.

And, if the load is removed while the switch is OFF, there will still be no voltage present on the left-hand terminal because wire that connects to the left-hand side is isolated (disconnected) from rail $\mathbf{L}_{\mathbf{1}}$ by the switch.

Proper Device Placement Example

Safe Operation Example
Under normal conditions, there will be no voltage potential at either of the load terminals while the switch is in the OFF (open) position.

Thus, if the load is a lamp, as long as the switch is OFF, a blown lamp could be removed from its socket and replaced without risk of shock or electrocution.

Improper Device Placement Example

Unsafe Operation Example

But, even under normal conditions, there will still be a voltage potential present at the load terminals while the switch is OFF since the load is
 directly connected to $\mathbf{L}_{\mathbf{1}}$.

For safety reasons, both load terminals should be held at a 0 -volt potential whenever the load is de-energized.

Improper Device Placement Example

Unsafe Operation Example

But, even under normal conditions, there will still be a voltage potential present at the load terminals while the switch is OFF since the load is directly connected to \mathbf{L}_{1}.

Thus, replacement of a blown lamp, even while the switch is OFF, could result in electrocution if accidental contact is made with the energized terminal of the empty lamp socket.

Safety Hazard!!!

Proper Device Placement Example

Safe Operation Example

If a ground fault* occurs on the wire that connects the switch to the load...

Then the metal enclosure will provide an abnormal short-circuit (low resistance) path for current flow between the fault location and the connection point of the chassis ground.

* - A ground fault occurs whenever an ungrounded circuit conductor is abnormally connected to the metal chassis.

Proper Device Placement Example

Safe Operation Example

Yet, even if a ground fault has occurred on the wire that connects the switch to the load, as long as the switch is OFF...

There is no closed-loop path for current to flow within the circuit, and thus the circuit will remain de-energized despite the existence of the fault.

Although the fault will remain undetected at this time,
it creates no adverse operational effects in the system and poses no immediate safety risk.

Proper Device Placement Example

Safe Operation Example

But, if a ground fault has occurred on the wire that connects the switch to the load and the switch is ON (closed), then a short-circuit will be created across the source terminals.

The instant that the source becomes short-circuited, the source current will become extremely large, causing the fuse to blow (open-circuit), in-turn
 de-energizing the circuit.

Proper Device Placement Example

Safe Operation Example

If the fault occurs before the switch is flipped on, then the system will fail to startup.

Normal Operation
But, if the load was already energized when the fault occurred, then the system will unexpectedly shutdown*.

Either way, once the fuse blows and the system is de-energized, the cause of the failure can be safely investigated.

[^0]
Improper Device Placement Example

Unsafe Operation Example

But, if the devices are improperly placed and a ground fault occurs on the wire that connects the switch to the load...

Then the metal chassis will provide a short-circuit (low resistance) path for current that bypasses the switch.

Thus, once the ground fault occurs, the load will be energized regardless of the switch position.

Extreme Safety Hazard!!!

Improper Device Placement Example

Unsafe Operation Example

If the switch is OFF when the ground fault occurs, then the load would become energized without warning!

\rightarrow This could be extremely hazardous depending on the type of system!

Consider what could potentially happen if someone was cleaning debris from around the shredding rotor of a chipper-shredder, and the main drive motor is unexpectedly energized due to a ground fault that occurred when a vibration dislodged a loose wire.

Extreme Safety Hazard!!!

Improper Device Placement Example

Unsafe Operation Example

But, if the switch is ON when the fault occurs, then the system would appear to continue operating normally until the operator unsuccessfully attempts to de-energize the system.
\rightarrow This could be extremely hazardous, especially if an emergency occurs and the operator needs to shutdown the system, only to find out that the power switch has been rendered inoperative!

Improper Device Placement

Extreme Safety Hazard!!!

Improper Device Placement Example

Unsafe Operation Example

But, if the switch is ON when the fault occurs, then the system would appear to continue operating normally until the operator unsuccessfully attempts to de-energize the system.

Also note that, since the ground fault is only bypassing the switch and it is not resulting in a short-circuit condition across the source due to the improperly designed control circuit, the fuse will not blow and de-energize the system.
Hopefully the main disconnect for the system is readily accessible or there was an additional emergency stop function also built into the system.

Improper Device Placement

Extreme Safety Hazard!!!

[^0]: * - an unexpected shutdown can pose a safety risk, but the alternative is typically more dangerous.

