
- 1 -

Kennesaw State University ECET 4530 – Laboratory Exercise PLC-1E

Electrical Engineering Technology RSLogix 5000 Software II – Programming II

Introduction:
This exercise continues the programming portion of this experiment during which you will utilize the

RSLogix 5000 software to develop a second ladder logic program that can be downloaded into the
PLC in order to automate the proposed motor control system. Specifically, this program will be used
to control the operation of the system’s second Induction motor which is energized by means of a
PowerFlex 40 (PF40) Variable Frequency Drive (VFD) that can communicate with the PLC via the
system’s Ethernet network.

Procedure:

RSLOGIX 5000 SOFTWARE

Although you could begin this part of the experiment by executing the RSLogix software and
creating a “New Project” as you did at the beginning of part D, since you are using the exact
same motor control system for part E, it is quicker simpler to open the project that you saved on a
memory-stick for part D and delete that project’s ladder diagram, after which you will “Save As”
a new project and then begin building the new ladder diagram.

Note that, by doing this, all of the tags that you previously created for the part D program will still
exist in the new project for the part E program.

Creating the New Project

Execute the RSLogix 5000 software by double-clicking on the RSLogix 5000 shortcut present on
the desktop of the computer or by clicking on the Start button and choosing:

All ProgramsRockwell SoftwareRSLogix 5000 Enterprise Series RSLogix 5000.

1. Open the project that you created and saved on a memory-stick for part D of this experiment,

and then once the project is open, choose the Save As option under the File menu in the
RSLogix window and rename your project:

“Lastname_Controller_P2.ACD”

2. In the Controller Organizer window, expand the MainProgram
folder by clicking next to the folder.

3. Double-click the MainRoutine icon to open the Routine Editor
window

4. The Routine Editor window should now display the ladder diagram that you created for part D:

5. Click on the rung number to the left of the rung to highlight the rung and then press the Delete
key to delete the rung, after which only the “End” rung should remain in the ladder.

- 2 -

Notes Regarding the Operation of the Motor Control System for Program #2:

The PLC-based motor control system constructed for use during this experiment contains two
induction motors, the first of which is energized by means of a contactor whose field-coil is wired
directly to the PLC’s output module, and the second of which is supplied by a PowerFlex 40 VFD
that will be controlled remotely by the PLC via the control system’s Ethernet network.

During part D of this experiment, you created a simple program that provided “Start-Stop” control
over the operation of motor #1. Now you will create a second program that allows the PLC to
control the operation of motor #2 by means of the PF40 VFD.

In this case, when START is pressed, the VFD will become energized, and it will begin supplying its
motor with a set of three-phase voltages for a total of 22 seconds. Initially, the frequency of the
voltages will increase from 0Hz up to 30Hz and the VFD will supply to motor at this frequency for
a total of 10 seconds (including the acceleration time), after which the frequency of the voltages
will increase to 60Hz and the VFD will continue operating at this new frequency for an additional
12 seconds (including the acceleration time).

Once the entire 22-second process is complete, the frequency of the voltages will automatically
decrease to 0Hz and the VFD will be de-energized. But if the STOP button is pressed at any time
during this process, the process will terminate, the frequency of the voltages will decrease to 0Hz
and the VFD will be de-energized.

6. Add a new rung by clicking on the rung icon in the New Component toolbar.

7. Add an XIC instruction to the left side of the new rung.

8. Double-click on the “?” above the XIC to enable a drop-down menu that contains
all of the previously-defined tags. Expand that menu, double-click on the alias
tag Start in that list, and then press “Enter” to assign it to the XIC.

9. Add an OTL to the right-side of the rung and create a New Tag named “Begin” for that OTL.

OTL Operation: When the rung condition to the left of the OTL becomes true, the OTL will
set the bit associated with its assigned tag to a one (1), but when the rung
condition to the left of the OTL becomes false, the OTL does nothing.

In other words, the OTL can set the bit but it cannot reset the bit.

OTU Operation: When the rung condition to the left of the OTU becomes true, the OTU will
reset the bit associated with its assigned tag to a zero (0), but when the rung
condition to the left of the OTU becomes false, the OTU does nothing.

In other words, the OTU can reset the bit but it cannot set the bit.

Since Begin is a Boolean tag, it relates to a single bit of memory. This bit will be used within the
program as a Status Bit, the value of which will determine the operational state of the system.
In this case, when Begin is set to a “1”, the system will begin operating and the motor will be
energized for a total of 22 seconds unless STOP is pressed to terminate the process early.

- 3 -

10. Add a new rung below the existing rung.

11. Add an XIC instruction to the left side of the new rung and assign it the tag Begin.

12. Select the “Timer/Counter” tab in the New Component toolbar.

13. Select a “TON” (Turn-On Delay) timer and place it to the right of
the XIC on the new rung.

14. Right-click the “?” in the Timer field of the TON and create

a New Tag named Run_Timer1 for the timer as shown to
the right. Click OK when done.

The ?’s that initially appeared in both the Preset and the Accum
fields should now be replaced by 0’s (zeros).

15. Double-click the “0” in the Preset field of the TON and enter

the value 10000.

The Preset value is the time delay in msec, therefore the value 10000 relates to a time delay of
10 seconds.

16. Rung 1 should now appear as follows:

The timer on this rung will be used to control the first 10-seconds of the motor’s operation.

TON Operation: When the rung condition to the left of the TON becomes true, the timer will

be enabled, and its Enable (EN) bit will be set. The timer will then begin
incrementing the value in its Accumulator (Accum) in real-time from the
initial value stored in the Accum up its Preset value, at which time it stops
counting and the Done (DN) bit is set.

 The timer will remain in this state until the rung condition becomes false, at
which time both the EN bit and the DN bit will be reset and the Accum will
revert back to its initially defined value.

 Note that, while it is enabled, the TON’s Accum can also be reset back to its
initial value by utilizing the RES (reset) instruction that resides on the
“Timer/Counter” tab in the New Component toolbar.

Controlling the Operation of the PowerFlex 40 Variable Frequency Drive:

When the PowerFlex_40 was added into the initial project that you created at the beginning of
part D of this experiment, the RSLogix software automatically created a set of base tags that
refer to information that is stored in the PF40’s memory, similar to the base tags that the
software created for the bits contained in both the IQ-16 input module and the OW-16 output
module. But in this case, PF40 utilizes the values stored in its memory that are referenced by
these software-created base tags to define its exact operational state.

- 4 -

The tags that we will utilize during this part of the experiment are:
O.Start
O.Stop

O.FreqCommand

Note that when looking for the tags associated with the PF40’s operation in the list of previously-
created base tags or within a ladder diagram, the tags will all begin with either PowerFlex_40:I
or PowerFlex_40:O. The PowerFlex_40: that appears before each of the tag names identifies
the device that contains the memory in which the information identified by these tags is located
(you named the drive “PowerFlex_40” when you added that module to the project), and the
first part of the actual tag names will begin with I or O because the information referenced by
these tags relates to either Input or Output functions of the drive.

Although we will not utilize them during this part of the experiment, there are a variety of other
tags associated with the PF40’s operation that you might find useful, including:

O.Forward
O.Reverse

O.ClearFaults
I.Faulted

Thus, by assigning these tags to various instructions within a ladder diagram, we can program
the PLC to control the operation of the PF40.

PF40 Operation: The PowerFlex_40 must be enabled before it can produce a set of variable
frequency voltages for its Induction motor. By default, this is accomplished
by pressing the green “Start” button on the PF40’s front panel. Similarly,
the drive can be disabled by pressing the red “Stop” button on its front panel.

But, instead of having these buttons directly energize or de-energized the
drive’s circuitry, the drive’s memory contains two bits that are identified by
the tags O.Start and O.Stop, and the drive references the values stored in
these bit locations in order to determine its operational status.

Thus, pressing the green “Start” button typically causes the O.Start bit to be
set to a 1 and the O.Stop bit to be reset to a 0, in-turn triggering the drive to
activate the PWM circuitry that creates the variable-frequency set of voltages
that the drive supplies to connected motor (i.e. – “start the drive”).

On the other hand, pressing the red “Stop” button causes the O.Start bit to be
reset to a 0 and the O.Stop bit to be set to a 1, in-turn triggering the drive to
(by default) lower the frequency of its output voltages to zero and then to
deactivate the PWM circuitry (i.e. – “stop the drive”).

For safety reasons, pressing the “Stop” button will always cause the O.Start
bit to be reset and the O.Stop bit to be set, in-turn deactivating the drive.

But it may not be desirable to always have the “Start” button activate the
drive, especially if that drive is part of a larger, automated motor-control
system in which a manual (unexpected) start of the drive may either pose a
safety risk or cause problems with respect to the entire system’s operation.
For this reason, the drive can be configured to receive a Start signal from a
variety of sources, one of which is the “Start” button on the PF40’s panel.

- 5 -

Previously, in part B of this experiment, you changed the value of the drive’s
Basic Program Group parameter P036 from a 0 to a 5, and it is this value that
the drive utilizes in order to determine the Start “source”. The Start sources
referenced by those two values are:

0 – “Keypad” (default value)
5 – “Comm Port”

Since the value of the parameter was changed to a 5, the drive will no longer
recognize the “Start” button on its panel. Instead, the drive will now only
accept Start commands via its communication (Ethernet) port.

But as stated above, even though the drive was configured to receive a Start
command from its communication port, the PF40 will accept a Stop
command from either its communication port or by means of the red “Stop”
button on the PF40’s front panel.

Since the tag PowerFlex_40:O.Start was already created by the RSLogix software when the
PF40 was initially added to the project, we can remotely cause that bit to be set by assigning
that tag to the appropriate output instruction in our program. Specifically, we will assign the
tag to an OTL such that, when the rung condition for that OTL becomes TRUE, the PLC will
send a message to the PF40 (at the IP Address specified when adding the drive to the project)
via the Ethernet network, instructing the PF40 to set the “O.Start” bit (to enable the drive).

And since the PF40 also contains an “O.Stop” bit that must be reset whenever the “O.Start” bit
is set (the O.Start and O.Stop bits should always have opposite values), we will also assign the
“O.Stop” bit to an OTU on the same rung with the “O.Start” OTL.

Similarly, the PowerFlex_40 can be disabled by setting the “O.Stop” bit and resetting the
“O.Start” bit (i.e. – by assigning both the “O.Start” bit to an OTU and the “O.Start” bit to an
OTU on the same rung).

Once the drive has been enabled, it will begin to create and output a set of three-phase voltages,
the frequency of which is determined by the value stored in the PF40 memory location
referenced by the tag “O.FreqCommand”.

Specifically, the value stored in the tag location “O.FreqCommand” must be an integer number
ranging from 0  600. This value relates to the output frequency of the drive specified in
tenths of Hertz. Thus, if the value “600” is stored in that location, the drive will raise the
frequency of its output voltages to 60.0Hz when it is enabled.

We will utilize MOV instructions within our program change the values stored in the PF40’s
memory location referenced by O.FreqCommand in order to set the drive’s frequency to the
required values.

17. Add a rung to the bottom of your ladder diagram and place an XIC instruction on that rung.

18. Double-click on the “?” above the XIC, click on the down-arrow that appears in the Tag field,

and then expand the group of Run_Timer tags within the list of tags that appear.

Assign the Run_Timer.EN bit of the timer to the XIC by double-clicking on that
tag, and then press “Enter”.

- 6 -

19. Add a MOV instruction to the right of the XIC.

The MOV instruction resides under the “Move/Logical” tab of
the New Components toolbar.

MOV Operation: When the rung condition to the left of the MOV
becomes TRUE, the MOV instruction copies the data located in or specified
by the Source field into the location specified by the Destination field (such
as a frequency value into the PF40’s “O.FreqCommand” register).

 Note that, when locations are defined in either the Source or Destination
fields, the MOV instruction will display the values currently stored at those
locations within the “??” field that appear immediately below the Source
and Destination fields. Otherwise, the “??” fields will be blank.

20. Since the PF40 must first be set to supply a set of 30Hz voltages to the motor, double-click the

“?” in the Source field of the MOV instruction and enter the value 300.

21. Double-click the “?” in the Destination field of the MOV
instruction and locate “PowerFlex_40:O.FreqCommand”
in the drop-down menu that appears.

Double-click “PowerFlex_40:O.FreqCommand”
to assign it to the Destination field.

Rung 3 should now appear as shown to the right:

When the timer is enabled, the Run_Timer.EN XIC will become TRUE and the MOV instruction
will copy the value 300 into the destination location defined by the tag O.FreqCommand.

Note that, as configured, as long as the timer remains enabled, the MOV instruction will

continuously copy the value 300 into the O.FreqCommand destination. But we only need this
to occur one time when the timer is first enabled. To accomplish this, we will utilize an ONS
instruction.

22. Add a “One Shot” (ONS) to the right of the XIC and define a New Tag to name it “one1”.

Note – the ONS instruction is located under the “Bit” tab.

ONS Operation: When the rung condition to the left of the ONS becomes TRUE, the ONS is
triggered, making the ONS TRUE for that one scan of that rung, and the rung
will be evaluated as such for that scan of the rung.

But, after the ONS is triggered, the ONS will return a FALSE condition during
any successive scans of the rung until the ONS is reset.

In order to reset the ONS (so it can be triggered again), the rung condition to
the left of the ONS must become FALSE for at least one scan of the rung, after
which it can return TRUE to trigger the ONS again for an additional scan.

- 7 -

23. Add the following rung to also enable the drive when Run_Timer1 is enabled:

24. Add the following rung to enable a 12 second Run_Timer2 when Run_Timer1 is “done”:

25. Add the following rung to increase the drive frequency to 60Hz when Run_Timer2 is enabled:

26. Add the following rungs switch (the status bits) from Begin to Shutdown mode when the STOP
button is pressed, and to lower the frequency to 0Hz and disable the drive when Shutdown is
initiated:

27. Add a parallel branch on the following rung and place an XIO on the branch that will become
TRUE and also initiate a Shutdown when the STOP button is pressed.

28. The ladder logic program should now be complete. Download the program into the PLC (as
described in part D of this experiment) and test the program’s operation.

Note – a full image of the complete program appears on the next page.

29. View the last four slides of the “Ladder Logic – Conveyor Example” PowerPoint slides for a
discussion on Initializing Bits at the beginning of a ladder logic program and add the suggested
two rungs at the beginning of your program in order to initialize all of the bits that are being
set/reset using OTLs/OTU’s.

- 8 -

