

ECET 4520

Industrial Distribution Systems, Illumination, and the NEC

Voltage Drop Calculations

Voltage Drop Effects

A terminal voltage that is 10% below rated voltage can result in a decrease in <u>efficiency</u> of substantially more than 10%.

For example: The light output of fluorescent lights would be reduced by 15% and that of incandescent lights would be reduced by 30%.

Voltage Drop Effects

Additionally, when motors are supplied with less-than-rated voltage, they typically <u>run hotter</u> and <u>produce less torque</u>.

If an induction motor is supplied with a voltage that is 10% below its rating, the running current will increase 11%, the operating temperature will increase by 12%, and the developed torque will be reduced by 19%.

The reduction in developed torque may cause the motor's speed to decrease, further increasing the potentially harmful current and temperature effects in the motor.

Branch Circuits

210.19(A)(1) - Conductors - Min Ampacity & Size

Branch-circuit conductors shall have an ampacity not less than the maximum load to be served. Conductors shall be sized to carry <u>not less than the larger of 210.19(A)(1)(a)</u> or (b).

- (a) ... the minimum conductor size shall have an allowable ampacity not less than (100% of) the non-continuous load plus 125% of the continuous load.
- (b) The minimum conductor size shall have an allowable ampacity not less than the maximum load to be served after the application of any adjustment or correction factors.

Voltage Drop Guidelines

210.19(A) – Conductors – Min Ampacity & Size

INFORMATIONAL NOTE 4: Conductors for branch circuits sized to prevent a voltage drop exceeding 3% at the farthest outlet... and where the maximum total voltage drop on both feeders and branch circuits to the farthest outlet does not exceed 5%, provide reasonable efficiency of operation.

See Informational Note #2 of 215.2(A)(1)^{*} for voltage drop on feeder conductors.

(* - The other note basically says the same about feeders.)

Voltage Drop Guidelines

<u>90.5(C) – Explanatory Material</u>

Explanatory material... is included in this Code in the form of <u>informational notes</u>. Such notes are informational only and <u>are not enforceable</u> as requirements of this Code.

Based upon the above statement, the guidelines provided by Info. Note #4 of 210.19(A) are not an NEC requirement.

Despite this fact, in terms of professional design standards, failure to consider any voltage drop concerns may result in a poorly designed system.

Calculating Voltage Drop

In general, the voltage drop that occurs in the conductors of a specific circuit in an AC system is a function of:

- The load (current) that flows through the conductors
 - Although proper circuit conductor sizing requires knowledge of the current magnitude, the impact of a circuit's voltage drop on the overall operational voltage of a system is a function of both the <u>magnitude and phase angle</u> of the circuit current.
- The impedance (resistance and reactance) of the conductors.
 - The NEC provides limited resistance and reactance information based on conductor type, size, temperature, and other operational parameters.

Conductor Characteristics

Conductor <u>resistance</u> (DC) or <u>impedance</u> (AC) information can be found within the NEC in:

Chapter 9 – "Tables"

specifically within Tables 8 and 9:

 Table 8 – "Conductor Properties" (DC Resistance)

 w/ Note for Temp. effects on Resistance

Table 9 – "AC Resistance & Reactance..."

Table 8 – Conductor Properties

Table 8 provides <u>DC resistance</u> information for both copperand aluminum conductors based on conductor type and size.

Table :	8 Cone	ductor I	roperties Conductors							Direct-Current Resistance at 75°C (167°F)							
			St	randing	nding			Overall			Co						
(AWG or kcmil)	Area			Dia	Diameter		Diameter		Area		Uncoated		Coated		ninum		
	mm ²	Circular mils	Quantity	mm	in.	mm	in.	mm ²	in.2	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT		
14 14	2.08 2.08	4110 4110	17	0.62	0.024	1.63 1.85	0.064 0.073	2.08 2.68	0.003 0.004	10.1 10.3	3.07 3.14	10.4 10.7	3.19 3.26	16.6 16.9	5.06 5.17		
12 12	3.31 3.31	6530 6530	1 7	0.78	0.030	2.05 2.32	0.081 0.092	3.31 4.25	0.005 0.006	6.34 6.50	1.93 1.98	6.57 6.73	2.01 2.05	10.45 10.69	3.18 3.25		
10 10	5.261 5.261	10380 10380	17	0.98	0.038	2.588 2.95	0.102 0.116	5.26 6.76	0.008 0.011	3.984 4.070	1.21 1.24	4.148 4.226	1.26 1.29	6.561 6.679	2.00 2.04		
8	8.367 8.367	16510 16510	17	1.23	0.049	3.264 3.71	0.128 0.146	8.37 10.76	0.013 0.017	2.506 2.551	0.764 0.778	2.579 2.653	0.786 0.809	4.125 4.204	1.26		
6 4 3 2 1	13.30 21.15 26.67 33.62 42.41	26240 41740 52620 66360 83690	7 7 7 7 19	1.56 1.96 2.20 2.47 1.69	0.061 0.077 0.087 0.097 0.066	4.67 5.89 6.60 7.42 8.43	0.184 0.232 0.260 0.292 0.332	17.09 27.19 34.28 43.23 55.80	0.027 0.042 0.053 0.067 0.087	1.608 1.010 0.802 0.634 0.505	0.491 0.308 0.245 0.194 0.154	1.671 1.053 0.833 0.661 0.524	0.510 0.321 0.254 0.201 0.160	2.652 1.666 1.320 1.045 0.829	0.808 0.508 0.403 0.319 0.253		
1/0 2/0 3/0 4/0	53.49 67.43 85.01 107.2	105600 133100 167800 211600	19 19 19 19	1.89 2.13 2.39 2.68	0.074 0.084 0.094 0.106	9.45 10.62 11.94 13.41	0.372 0.418 0.470 0.528	70.41 88.74 111.9 141.1	0.109 0.137 0.173 0.219	0.399 0.3170 0.2512 0.1996	0.122 0.0967 0.0766 0.0608	0.415 0.329 0.2610 0.2050	0.127 0.101 0.0797 0.0626	0.660 0.523 0.413 0.328	0.201 0.159 0.126 0.100		
250 300 350	127 152 177	Ξ	37 37 37	2.09 2.29 2.47	0.082 0.090 0.097	14.61 16.00 17.30	0.575 0.630 0.681	168 201 235	0.260 0.312 0.364	0.1687 0.1409 0.1205	0.0515 0.0429 0.0367	0.1753 0.1463 0.1252	0.0535 0.0446 0.0382	0.2778 0.2318 0.1984	0.0847 0.0707 0.0605		
									- NF	C 2014	l. Chan	oter 9 – '	"Table	»". Tabl	e 8 – '		

Table 8 – Conductor Properties

Table 8 provides <u>DC resistance</u> information for both copper and aluminum conductors based on conductor size.

Table 8 Conductor Properties Conductors										Direct-Current Resistance at 75°C (167°F)							
Size			Sta	anding		Overall					Co						
	Area Circular mm ² mils			Diameter		Diameter		Area		Uncoated		Coated		Aluminum			
or kcmil)			Quantity	mm	in.	mm	in.	mm ²	in.2	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT	ohm/ km	ohm/ kFT		
14 14	2.08 2.08	4110 4110	17	0.62	0.024	1.63	0.064 0.073	2.08	0.003	10.1	3.07 3.14	10.4 10.7	3.19 3.26	16.6 16.9	5.06 5.17		

Resistance is defined in terms of Ω/km or Ω/kFt and is based on a 75°C conductor temperature.

The table's notes provide a method for determining resistance at temperatures other than 75°C.

otes: 1. These resistance values are valid **only** for the parameters as given. Using conductors having coated strands, different stranding type, and, especially, other temperature changes the resistance.
2. Formula for temperature change: R₂ = R₁ [1 + 0 (T₂ - T₃)] where C₀ = 0.00237 (M₂ = 0.00330 at 75°C.

Table 9 - AC Resistance/Reactance

Table 9 provides AC resistance and reactanceinformation forboth copper and aluminum conductors based on conductortype and size, and the type of conduit used for the raceway.

Size (AWG or kcmil)					table states											
	X _L (Rea	wires	AC	AC Resistance for Copper Wires			AC Resistance for Aluminum Wires			Effective Z at 0.85 PF for Copper Wires			Effective Z at 0.85 PF for Aluminum Wires			"Uncoated Copper
	PVC, Aluminum Conduits	Steel Conduit	PVC Conduit	Alum- inum Conduit	Steel Conduit	PVC Conduit	Alum- inum Conduit	Steel Conduit	PVC Conduit	Alum- inum Conduit	Steel Conduit	PVC Conduit	Alum- inum Conduit	Steel Conduit	(AWG or kemil)	wires instead of "Copper Wires"
12	0.177 0.054	0.223 0.068	6.6 2.0	6.6 2.0	6.6 2.0	10.5 3.2	10.5 3.2	10.5 3.2	5.6 1.7	5.6 1.7	5.6 1.7	9.2 2.8	9.2 2.8	9.2 2.8	12	- opposition
10	0.164 0.050	0.207 0.063	3.9 1.2	3.9 1.2	3.9 1.2	6.6 2.0	6.6 2.0	6.6 2.0	3.6 1.1	3.6 1.1	3.6 1.1	5.9 1.8	5.9 1.8	5.9 1.8	10	
8	0.171 0.052	0.213 0.065	2.56 0.78	2.56 0.78	2.56 0.78	43 1.3	43 1.3	43 13	2.26 0.69	2.26 0.69	2.30 0.70	3.6 1.1	3.6 1.1	3.6 1.1	8	
6	0.167 0.051	0.210 0.064	1.61 0.49	1.61 0.49	1.61 0.49	2.66 0.81	2.66 0.81	2.66 0.81	1.44 0.44	1.48 0.45	1.48 0.45	2.33 0.71	2.36 0.72	2.36 0.72	6	
4	0.157 0.048	0.197 0.060	1.02 0.31	1.02 0.31	1.02 0.31	1.67 0.51	1.67 0.51	1.67 0.51	0.95 0.29	0.95 0.29	0.98 0.30	1.51 0.46	1.51 0.46	1.51 0,46	4	
3	0.154 0.047	0.194 0.059	0.82 0.25	0.82 0.25	0.82 0.25	1.31 0,40	1.35 0.41	1.31 0.40	0.75 0.23	0.79 0.24	0.79 0.24	1.21 0.37	1.21 0.37	1.21 0.37	3	
2	0.148 0.045	0.187 0.057	0.62 0.19	0.66 0.20	0.66 0.20	1.05 0.32	1.05 0.32	1.05 0.32	0.62 0.19	0.62 0.19	0.66 0.20	0.98 0.30	0.98 0.30	0.98 0.30	2	
I.	0.151 0.046	0.187	0.49 0.15	0.52	0.52	0.82 0.25	0.85	0.82	0.52	0.52	0.52	0.79 0.24	0.79	0.82	E	

Table 9 - AC Resistance/Reactance

Although the AC <u>resistance values</u> provided within Table 9 are based on a 75°C temperature, the values can be adjusted for temperatures other than 75°C in the same manner as the DC resistances provided by Table 8.

$$R_2 = R_1 \cdot \left[1 + \alpha \cdot \left(T_2 - 75\right)\right]$$

Note that the <u>reactance values</u> provided within Table 9 are <u>independent of temperature</u>, and thus do NOT need to be adjusted for temperatures other than 75°C.

Calculating Voltage Drop

Although the magnitude of the AC voltage drop that occurs across a conductor is a function of the conductor impedance and the magnitude of the conductor current, the <u>impact</u> of voltage drop on a system's overall operational voltages is a function of both the <u>magnitude and phase angle</u> of the conductor currents.

$$\widetilde{V}_{load} = \widetilde{V}_{source} - 2 \cdot \widetilde{V}_{drop} = \widetilde{V}_{source} - 2 \cdot \widetilde{I} \cdot Z_{conductor}$$

Vdrop

A steady-state phasor analysis of the circuit requires the use of complex numbers during the calculations.

Effective Impedance

Table 9 also provides an <u>Effective Impedance</u> (*Ze*) for the conductors, both in Ω/km and Ω/kFt , based on a 0.85 lagging operational power-factor.

The Effective Impedance value provides a simple method for calculating the voltage-drop that will occur in a circuit without the use of "complex number" mathematics.

Effective Impedance

Note that for power factors other than 0.85 lagging, the effective impedance may be calculated using a formula provided in the FPNs for Table 9:

 $Z_e = R \cdot \cos \theta + X \cdot \sin \theta$

where: R is the conductor resistance (Ω/length),
X is the conductor reactance (Ω/length), and
cosθ is power factor of the load supplied by the circuit.

Note that $\sin\theta$ may be determined from:

 $\theta = \cos^{-1}(pf)$

θ is positive for lagging pf θ is negative for leading pf

