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Introduction

Three-Phase Induction Machines

The Three-Phase (3Φ) Induction Machine is a rotational      
device that, when supplied with a 3Φ balanced voltage,         
can operate as either a motor or a generator.

Although different versions of the induction machine exist, 
this presentation will cover the 3Φ “Squirrel-Cage” 
Induction Machine since this type is routinely used in 
industry as motors due to their extreme durability, simple 
operation, and ease of speed control when supplied by a 
Variable Frequency Drive (VFD). 
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The Three-Phase (3Φ) Induction Machine consists of a stator
(stationary portion) and a rotor that are separated by a 
small air-gap.

Three-Phase Induction Machines

aV
~

bV
~

cV
~

Induction Machine Construction

The following presentation covers the construction and 
operation of a conceptual, 3Φ, 2-pole, Squirrel-Cage, 
Induction machine.  
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Note – although the construction of an actual Induction machine may 
vary from the conceptual machine shown, the operational 
mechanisms and characteristics will be similar to those presented.

Induction Machine Construction

aV
~

bV
~

cV
~

The stator is the stationary (outer) portion of the machine.  It 
provides the primary magnetic field required for operation.  
This field will be referred to as the “stator field”.

Induction Machine Construction
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The rotor is the rotational (center) portion of the machine.    
It that provides the mechanism for energy conversion 
(elecmech or mechelec) as it interacts with the stator field.

Induction Machine Construction

aV
~

bV
~

cV
~

Although they are magnetically coupled together, the stator 
and the rotor will initially be considered individually, after 
which their mutual operation will be discussed.

Induction Machine Construction
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Rotor Construction

Squirrel-Cage Rotor

The construction of the rotor determines the type of induction 
machine.  This presentation will focus on “Squirrel-Cage” 
type rotors.

Stator

Rotor
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A “Squirrel-Cage” rotor is constructed with a set of conductive 
bars, the ends of which are all shorted together by a pair of 
conductive rings.

Stator

Rotor

Squirrel-Cage Rotor

The conductive bars are embedded just under the surface of a 
cylindrical rotor, allowing for only a small air-gap between 
the rotor and the stator.

Stator

Rotor

Squirrel-Cage Rotor
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Note – The rotor itself is constructed using laminated sheets of steel.     
The laminations provide insulation between the sheets, preventing 
currents from flowing length-wise through the rotor unless they 
actually travel through the embedded conductive bars.

Stator

Rotor

Squirrel-Cage Rotor

Squirrel-Cage Rotor

Conductive Bars

End Rings
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Stator Construction

3Φ Induction Machine Stator

The stator of the machine has three symmetrically-placed 
windings to which a balanced, 3Φ voltage source is 
connected.
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b

b’

c

c’
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Review:  AC-Supplied Coils

If a field coil is supplied by an AC source whose voltage is:

then the coil will develop a time-varying flux
that will pass through the center of the coil,
the value of which can be determined by
applying Faraday’s Law:
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Given the coil voltage:

the resultant flux (t) will be:

Furthermore, the magnetizing current drawn
into the coil can be determined from the
relationship:  
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Thus, given the coil voltage v(t) and flux (t):

The magnetizing current drawn into the coil
will be: 
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Review:  AC-Supplied Coils
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Note that both the flux (t) and the current i(t) vary 
sinusoidally and that they are in-phase with each other:
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Thus, the flux will be positive whenever the coil-current is 
positive and it will be negative when the current is negative.

)(ti

positive positive

negative negative

Review:  AC-Supplied Coils
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3Φ Stator Windings

The same principle can be applied to the each of the three 
symmetrically-placed stator windings in the 3Φ induction 
machine.
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bV
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c’
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Each winding induces a magnetic field that passes through the 
machine’s “rotor region”, the magnitude of which varies 
proportionally with that winding’s instantaneous current.

aV
~

bV
~

cV
~

a

a’

b

b’

c

c’

3Φ Stator Windings

ia ib ic

“Positive” instantaneous winding currents result in fields that 
point in the “positive” directions (as shown in the figure).
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~

Positive Field Directions

a

a’

b

b’

c

c’

3Φ Stator Windings
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“Negative” instantaneous winding currents result in fields that 
point in the “negative” directions (as shown in the figure).

aV
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~

cV
~

Negative Field Directions

a

a’

b

b’

c

c’

3Φ Stator Windings

The above figure highlights the phase-A winding, showing the 
magnetic field that results from a positive winding current. 
(The “positive” field points from a’a up through the rotor region).
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a

a’

3Φ Stator Windings
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Similarly, the above figure shows the magnetic field that results 
from a negative phase-A winding current.
(The “negative” field points from aa’ down through the rotor region).
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~

a

a’

3Φ Stator Windings

Rotating Stator Field
The net (resultant) field created by the three stator windings 

can be determined by summing the three individual field 
vectors at various points in time.

0
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At time t = 0: ia = 0,    ib = –0.866,    ic = 0.866

The magnitude and direction of the three field components, 
are shown below (referenced to the center of the rotor region):

0

Rotating Stator Field

Rotating Stator Field
At time t = 0: ia = 0,    ib = –0.866,    ic = 0.866

The resultant field is the vector-sum of the three individual 
components:

0
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Rotating Stator Field
At time t = t1: ia = 0.5,    ib = –1.0,    ic = 0.5

The magnitude and direction of the three field components, 
are shown below (referenced to the center of the rotor region):

t1

Rotating Stator Field
At time t = t1: ia = 0.5,    ib = –1.0,    ic = 0.5

The resultant field is the vector-sum of the three individual 
components:

t1
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Rotating Stator Field
At time t = t2: ia = 0.866,    ib = –0.866,    ic = 0.0

The magnitude and direction of the three field components, 
are shown below (referenced to the center of the rotor region):

t2

Rotating Stator Field
At time t = t2: ia = 0.866,    ib = –0.866,    ic = 0.0

The resultant field is the vector-sum of the three individual 
components:

t2
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Rotating Stator Field
At time t = t3: ia = 1.0,    ib = –0.5,    ic = –0.5

The magnitude and direction of the three field components, 
are shown below (referenced to the center of the rotor region):

t3

Rotating Stator Field
At time t = t3: ia = 1.0,    ib = –0.5,    ic = –0.5

The resultant field is the vector-sum of the three individual 
components:

t3
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Rotating Stator Field
As time varies from t = 0  t = t3 (i.e. – from 0°90° or ¼ cycle of the 

sinusoidal currents), the resultant field maintains a constant 
magnitude while its vector direction rotates clockwise by 90°.  

90
o

0°90°

360
o

Rotating Stator Field
If the same logic is applied over one cycle of progression, the 

resultant field will have a constant magnitude and its vector 
direction will rotate 360° clockwise (i.e. – one complete revolution).  

0°  360°
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Rotating Stator Field

Thus, the three individual (winding) fields combine to form a 
net “stator field” field that is constant in magnitude but 
rotates in direction.

aV
~

bV
~

cV
~
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c

c’

Rotating Stator Field

And since the “stator field” passes through the rotor region, 
the squirrel-cage rotor conductors will be exposed to a 
time-varying (rotational) magnetic field.

snsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsn
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Rotating Stator Field

But let’s characterize the “stator field” before we investigate 
the field’s interaction with the rotor conductors.

snsnsnsnsnsnsnsnsnsnsnsnsnsnsnsnsn

Synchronous Speed

The rotational speed, ns, of the “stator field” defines the 
synchronous speed of the machine… (the speed at which the 
rotating rotor conductors and the stator field are synchronized).
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bV
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cV
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Synchronous Speed

The synchronous speed, ns, is a function of both the source 
frequency and the number of poles* of the machine.

[* – the # of poles is a constructional feature of the machine]
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bV
~
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Two-Pole Stator Construction

The stator shown above is called a “two-pole” stator due to 
the nature of the resultant stator field.
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Two-Pole Stator Construction

It is called a “two-pole” design because the resultant field is 
similar to the field that would be created by the opposing 
poles of two permanent magnets (i.e. – one N pole & one S pole).

sn

sn

 NS

Two-Pole Stator Construction

The two-pole stator-field rotates one complete revolution per 
cycle of the stator excitation.
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Four-Pole Stator Construction

Note that the winding 
configurations for the 4-pole 

and higher-order stator designs 
will not be shown in this 

presentation 

sn

sn



N

N

SS

poles

f
n elec
s #

120 


Note that higher-order stators also exist, such as a four-pole
design that will result in the stator-field shown above.

A four-pole stator-field has 2x the number of poles but only 
rotates ½ revolution per cycle of the stator excitation.

Stator Field
&

Rotor Interaction
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Stator Field – Rotor Interaction

What happens when the squirrel-cage rotor conductors are 
exposed to the rotating stator field? 

aV
~

bV
~

cV
~
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a’
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b’
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c’

Based upon Faraday’s Law, a voltage is induced across a 
conductor if the conductor is moving orthogonally through 
a magnetic field, the magnitude of which is defined by:

Faraday’s Law of Induction
Applied to Linear Conductors

vlBe 

B

velocity v

length l

_+
e
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Similarly, if a pair of conductors are embedded under the 
surface of a rotor that is placed within the region through 
which the “stator field” is rotating, then the field lines will 
be cutting-across the rotor conductors. 

Faraday’s Law of Induction
Rotating Stator Field & Stationary Rotor Conductors

rotating
field

+e

+

_

e

_

Even though it is the field that is rotating, from the conductors’ 
perspective, they are moving orthogonally through the field 
lines, resulting in voltages being induced across the conductors 
that are proportional to the rotational speed of the field.

Faraday’s Law of Induction
Rotating Stator Field & Stationary Rotor Conductors

rotating
field

perceived
motion
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+e
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Note that the polarities of the induced voltages will be opposite 
due to their perceived opposing directions of motion through 
the field lines.

Faraday’s Law of Induction
Rotating Stator Field & Stationary Rotor Conductors

perceived
motion

+e

+

_
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_

In the case of the squirrel-cage rotor, the ends of the rotor 
conductors are shorted together by a pair of rings mounted 
on the ends of the rotor, providing a closed-loop path for 
current flow.

Stator Field – Rotor Interaction
Rotor Conductor Currents

short-
circuiting

ring

short-
circuiting

ring
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Since the rotor conductor voltages sum around the closed-loop 
conductive paths, currents will be induced in the rotor 
conductors that are proportional to the conductor voltages 
(which are, in-turn, proportional to the rotational speed of the field).

Stator Field – Rotor Interaction
Rotor Conductor Currents

+e

+

_

e

_

current

current
current

As previously discussed in Part A of the Magnetics presentation, 
if currents are flowing through each of the conductors, then 
localized magnetic fields will be induced around each of the 
conductors, and these fields will interact with the rotating 
stator field. 

Stator Field – Rotor Interaction
Localized Rotor Conductor Fields

CW conductor field

CCW conductor field
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Force

Force

Based upon the field interactions, a force will be developed on 
the upper conductor pointing to the right, and an equal force 
will be developed on the lower conductor pointing to the left.

Stator Field – Rotor Interaction
Forces Developed on Rotor Conductors

IlBF 

Furthermore, the opposite-pointing forces result in a net torque
(rotational force) being developed upon the rotor in the 
clockwise direction:

Stator Field – Rotor Interaction
Developed Torque 

TD ≡ Developed Torque – the total 
torque (rotational force) that 
the machine develops.
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Rotating Stator Field

Note that, since the field is constantly rotating, the opposing 
conductors upon which a torque is developed will vary with 
the instantaneous position of the stator field.
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Provided that the developed torque, TD, is greater than the 
total load torque, TLoad , then a positive acceleration torque, 
Taccel , will be available to accelerate the rotor in the same 
direction as the rotating stator field.

Stator Field – Rotor Interaction
Rotor Acceleration

sn

sn

DT

DT

rn

TLoad ≡ Total Load Torque – the 
total torque applied to the 
shaft of the machine that 
opposes its rotation.

Note that TLoad includes both the 
stopping force provided by the 
mechanical load bolted to the 
shaft and any friction, windage, 
or other loss forces experienced 
by the rotor. 

Taccel ≡ Acceleration Torque – the 
amount of torque available  
to accelerate the rotor and its 
attached mechanical load.

Taccel = TD – Tload

If Taccel is positive, speed will increase.
If Taccel is negative, speed will decrease.
If Taccel is zero, speed will remain constant.
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And if there is a positive acceleration torque, Taccel , and the 
rotor is free to rotate, then the rotor will begin to accelerate 
the rotor in the same direction as the rotating stator field.

Stator Field – Rotor Interaction
Rotor Acceleration
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Note that the developed torque, TD, is proportional to the rate 
at which the stator field cuts across the rotor conductors.

Thus, as rotor begins to rotate, the effective speed at which 
the field-lines cut across the rotor bars decreases, resulting 
in a decrease in the developed torque, TD.

Stator Field – Rotor Interaction
Rotational Effects on Developed Torque
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sn

sn

DT

DT

rn
DT

rn0 sn

Since the developed torque, TD, is proportional to the effective 
speed, neffective , at which the stator field cuts across the rotor 
bars, the developed torque will decrease linearly as the 
rotor speed increases, eventually decreasing to zero when 
the rotor is rotating at synchronous speed.

Stator Field – Rotor Interaction
Rotational Effects on Developed Torque

rseffective nnn 

rn
0 sn

DT

speed
rotor

Under “no-load” conditions (Tload =0), the rotor will accelerate 
until it reaches synchronous speed (nr = ns), at which point 
the developed and the acceleration torques equal zero, and 
the motor maintains steady-state rotation at synchronous 
speed.

Stator Field – Rotor Interaction
No-Load Operation

If the rotor is rotating at 
synchronous speed (nr = ns), 
then the field lines will no 
longer be passing by the 
rotor conductors and no 
torque will be developed.

Under steady-state 
No-Load conditions:

nr  ns

TD  0
Taccel = TD – Tload  0

An induction motor cannot accelerate past its synchronous 
speed without the application of an external rotational force.
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The torque-speed curve for an “ideal” induction machine is 
shown above for rotor speeds ranging from zerons.

Under no-load conditions, the motor will accelerate to and 
run steady-state at its synchronous speed 
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Ideal Motor – No-Load Operation

steady-state
no-load speed

If the rotor is subjected to a load torque after reaching 
synchronous speed under no-load conditions, then the rotor 
will slow down to the speed at which the developed torque, 
TD, equals to the load torque, TLoad.
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DT
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DT
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sn

Tload

nr

Ideal Motor – Operation Under Load

steady-state
speed under load
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Or, if the rotor is subjected to a load torque at startup, then the 
rotor will only be able to accelerate up to the speed at which 
the developed torque, TD, equals to the load torque, TLoad.
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Tload

nr

Ideal Motor – Operation Under Load

steady-state
speed under load

Note – Rotor speed is often expressed in terms of slip, which 
provides a measure of how much slower the rotor is 
rotating compared to the speed of the stator field.

Stator Field – Rotor Interaction
Slip
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As rotor speed varies from zero to synchronous speed (nr =0ns), 
the slip decreases linearly from one to zero (s =10).

Thus, slip and developed torque both vary in a similar manner.

Stator Field – Rotor Interaction
Slip
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DT
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Since both slip and developed torque decrease linearly as rotor 
speed varies from zero to synchronous speed, TD can be 
expressed in terms of the blocked-rotor torque, TBR , and slip: 

Stator Field – Rotor Interaction
Slip

sTT BRD 

sn
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DT

rnsn0

TBR ≡ Blocked-Rotor Torque
– the torque developed by 

the machine when the 
rotor isn’t moving (nr = 0).

Note: Blocked-Rotor Torque 
may also be referred to as 
Locked-Rotor Torque 
and/or Starting Torque. 
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Modeling
the

Induction Machine

The interaction between a 3Φ Induction Machine’s stator 
windings and rotor conductors is similar to the interaction 
between a transformer’s primary and secondary windings:

• Time-varying voltages are applied to a set of stator    
(primary) windings.

• Each stator winding creates a time-varying flux within       
the machine’s rotor region, the sum of which can be 
expressed a constant-magnitude “stator” field whose 
directional vector rotates in time. 

• The (time-varying) rotating “stator” field induces a 
voltage across the rotor conductors (secondary windings). 

Induction Machine Modeling Concepts
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Modeling the 3Φ Induction Machine
Note that, although the 3Φ Induction Machine has three         

stator windings, we will begin the modeling process by  
looking at the contribution of a single stator winding to the 
overall operation of the machine.

I.e. – we will create a 1Φ Equivalent Circuit for the 3Φ,      
Y-connected, Induction Machine

We can do this because, as a balanced load connected to a 
balanced 3Φ supply, the voltages and currents of the other 
two phases may be derived from the results of the single-
phase circuit solution.

sE
~

Stator
Winding

A time-varying voltage is applied to the stator winding, 
resulting in a rotating stator field.

Creating the 1Φ Equivalent Circuit
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rE
~

sE
~

Stator
Winding Rotor

Winding

A time-varying voltage is applied to the stator winding,     
resulting in a rotating stator field.

The rotating stator field induces voltages across the rotor bars.

Creating the 1Φ Equivalent Circuit

A time-varying voltage is applied to the stator winding, 
resulting in a rotating stator field.

The rotating stator field induces voltages across the rotor bars.

Since the ends of the rotor bars are shorted together, the 
induced voltages cause currents to flow in the rotor bars.

Creating the 1Φ Equivalent Circuit

rI
~

rE
~

sE
~

Stator
Winding Rotor

Winding
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rE
~

rR rjX

rI
~

sE
~

If the rotor bars are assumed to be ideal, then an infinite      
current would flow in the rotor conductors.

Thus, to accurately model the stator-rotor interaction, we 
must consider the impedance of the rotor bars, in terms of 
which the rotor current may be defined:

Rotor Bar Impedance Concerns

rr

r
r jXR

E
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


~
~

In order to analyze the circuit as if it contains an ideal 
transformer, the ratio of the stator and rotor “winding” 
voltages across the must be constant:

If so, this would allow the rotor impedances to be referred to 
the stator side of the ideal windings.

Rotor Voltage – Speed Interaction
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E
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sE
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But, the magnitude of the rotor conductor voltages varies as 
the machine accelerates, decreasing linearly as rotor speed 
increases from zero to synchronous speed:

And the frequency of the rotor voltages varies similarly: 

Rotor Voltage – Speed Interaction

srr nnasE  0
~

srr nnasf  0

rE
~

rR rjX

rI
~

sE
~

rR

rI
~~

BRsEsE
~

rjX

The rotor voltage – speed relationship may be expressed in 
terms of the magnitude, EBR, and the frequency, ƒBR , of the 
rotor voltages under blocked-rotor conditions (nr = 0) if 
rotor speed is expressed in terms of slip, as follows:

Rotor Voltage – Speed Interaction

BRr EsE 

BRr fsf 
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r BRjsXR

rI
~~

BRsEsE
~

It should be noted that the frequency, ƒBR , of the rotor voltages 
will equal to the frequency of the stator voltage, under ƒs , 
blocked-rotor conditions (nr = 0), therefore:

Because of this, the leakage reactance will also vary with speed: 

Rotor Voltage – Speed Interaction

sr fsf 

BRrsrsrrrrr XsLfsLfsLfLX   2)(22

One of the goals of creating this model is to be able to use it to 
predict the torque that the machine develops under various 
operating conditions.

Assuming that the magnitude of the stator voltages (and thus 
the stator field) remains constant, the torque developed by 
the motor will be proportional to the square of the magnitude 
of the current, Ir, that flows in the rotor bars.

Developed Torque

r BRjsXR
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BRsEsE
~
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The rotor current, Ir , when expressed in terms of the blocked-
rotor values and slip, may defined as:

If the goal is to determine torque, which can be calculated from 
rotor current, then we can manipulate the model as needed 
provided that it still allows us to calculate the rotor current.

Manipulating the Rotor Circuit
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Note – the speed dependence of the rotor “winding” voltage 
(expressed in terms of slip) prevents us from referring 
the rotor impedances to the “stator side” of the model.

We could remove this dependence if we divide the rotor 
voltage by slip, but this would also affect the rotor current. 

Manipulating the Rotor Circuit
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But, the overall solution for the rotor current will not change 
provided that we divide both the rotor voltage and the 
rotor impedances by slip:

→

Manipulating the Rotor Circuit
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When making this change, the slip terms cancel for both the 
rotor voltage and the rotor reactance.  

Since the rotor voltage no longer varies with speed, we can 
treat the stator and rotor “windings” as we would an ideal 
transformer.

→

Manipulating the Rotor Circuit

r BRjsXR

rI
~~

BRsEsE
~
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Note that we are now left with a rotor resistance that varies 
inversely with slip.

Although this may seem problematic since the resistance of 
the rotor conductors should not vary when the rotor begins 
to rotate, it turns out that we can account for this issue by 
making a simple adjustment to the rotor circuit.

Manipulating the Rotor Circuit
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In the model, the term Rr /s must account for all of the power 
transferred from the stator windings into the rotor circuit.  

This includes both the electric power dissipated by the rotor 
resistance and the electric power that is being converted to 
a mechanical form whenever the motor is developing a 
torque at some rotational speed.

Manipulating the Rotor Circuit
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We can account for these two independent power components 
by considering the resistance Rr /s as the series-equivalent 
of two distinct resistances, one the relates to the power loss 
in the rotor and the other that relates to the electrical 
power that is converted to a mechanical form, such that:

Manipulating the Rotor Circuit




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R
rr

r 1

Note that, when replacing the term Rr /s with the two series 
resistances, the resistance Rr is typically placed next to the 
reactance jXr, while the remaining resistance is placed to 
the right to help differentiate it from the rotor impedances. 

→

Manipulating the Rotor Circuit
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Since the resistance Rr accounts for the power dissipated by 
the rotor conductors, the remaining resistance,

must account for the electrical power that is converted to a 
mechanical form.

rR rjX
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Mechanical Power

Now that we’ve developed the circuit model the rotor portion 
of the machine, we must also account for the losses that 
result from the AC-supplied stator windings.

Note that these stator losses are very similar in nature to the 
losses that result from the AC-supplied primary winding of 
a practical transformer.
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Modeling the Stator Losses
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feR mjX

First, Rs and jXs are added to the stator-side of the model to 
account for the resistance and leakage reactance of the 
stator windings. 

The loss components, Rfe and jXm, are then added to account 
for the magnetization effects and the power losses that 
occur in the core structure of the induction machine.

Modeling the Stator Losses
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The resultant model can then be simplified and reduced in the 
same manner as the model for the practical transformer, 
resulting in the following 1Φ equivalent circuit for a 
practical, 3Φ, induction machine:

such that:

Simplifying the Model
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The following 1Φ Equivalent Circuit is often used to model 
the operation of a Y-connected, 3Φ, Induction Machine.

If it is assumed that the machine is supplied by a balanced 3Φ 
source, then the voltages and currents of the other phases 
can be derived from the results of the 1Φ circuit solution.

1Φ Equivalent Circuit
for a 3Φ Induction Machine
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Rfe and Xm account for the magnetization effects due to the 
rotating (time-varying) magnetic field created by the stator 
windings within the core material that forms the physical 
structure of the machine.

1Φ Equivalent Circuit
for a 3Φ Induction Machine
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Req and Xeq account for the impedance of the stator windings 
combined with the effective per-phase impedance of the 
rotor conductors (referred to the stator side of the model).

1Φ Equivalent Circuit
for a 3Φ Induction Machine
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The remaining resistance,            , relates to the mechanical 
load that the machine is driving.

This resistance varies with slip, appearing as a short-circuit at 
a slip of one (s=1) and an open-circuit at a slip of zero (s=0).

1Φ Equivalent Circuit
for a 3Φ Induction Machine
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The power consumed by the resistance             equals to the 
per-phase mechanical power produced by the machine.         

(I.e. – the electrical power converted to a mechanical form)

Mechanical Power
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Assuming balanced operation, the total mechanical power 
produced by the machine, Pmech, will equal to three times 
(3x) the power consumed in one phase by            .

Mechanical Power
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Since and                           ,

the total torque, TD, developed by the machine can be defined 
from the solution for mechanical power as:

Developed Torque
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If TD is plotted as a function of speed over the range nr=0ns, 
the resultant TD vs nr curve for a practical machine will 
resemble: 

Developed Torque
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Sample Problem
Given a 3Φ, 10hp, 230V, 6-pole, 60 Hz, 1138 rpm, Y-connected, 

squirrel-cage, induction motor with the following parameters:

Rs = 0.3 ,      Xs = 0.4 ,     R’r = 0.3 ,    X’r = 0.6 ,

Rfe = 100 ,    Xm = 24 ,   Pmechlosses = 190 W

If the motor is rotating at a speed of 1180 rpm while supplied with 
rated voltage and driving an unknown load,

Determine: the amount of torque, Tshaft , that is developed by the motor 
in order to drive its mechanical load, and

the total real power, Pelec , that the 3Φ source supplies to the 
induction machine.

Populate the Model
Given a 3Φ, 10hp, 230V, 6-pole, 60 Hz, 1138 rpm, Y-connected, squirrel-

cage, induction motor with the following parameters:
Rs = 0.3 ,     Xs = 0.4 ,   R’r = 0.3 ,   X’r = 0.6 ,

Rfe = 100 ,   Xm = 24 ,               Pmechlosses = 190 W
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100 j24
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17.7

Populate the Model
Given a 3Φ, 10hp, 230V, 6-pole, 60 Hz, 1138 rpm, Y-connected, squirrel-

cage, induction motor with the following parameters:
Rs = 0.3 ,     Xs = 0.4 ,   R’r = 0.3 ,   X’r = 0.6 ,

Rfe = 100 ,   Xm = 24 ,               Pmechlosses = 190 W
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17.7

Define the Supply Voltage
Given a 3Φ, 10hp, 230V, 6-pole, 60 Hz, 1138 rpm, Y-connected, squirrel-

cage, induction motor with the following parameters:
Rs = 0.3 ,     Xs = 0.4 ,   R’r = 0.3 ,   X’r = 0.6 ,

Rfe = 100 ,   Xm = 24 ,               Pmechlosses = 190 W
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Solve for Mechanical Power
To solve for the shaft torque, Tshaft, first determine the total mechanical 

power produced by the machine, Pmech.
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Solve for Shaft Torque
Then, subtract the mechanical losses from the total mechanical power in 

order to find Pshaft, convert the result to horse-power, and then determine 
Tshaft from the shaft power value:
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Determine the Input Current
To solve for the total real power supplied by the source to the machine, Pelec, 

first determine the input impedance of the machine and use the result to 
solve for the line current:
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Determine the Source Power
Then, determine the total complex power produced by the source, S3Φ, the 

real part of which equals the real power supplied by the source to the 
motor:
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The model parameters for an induction motor are often unknown 
because they aren’t typically provided by the manufacturer.

But the parameters can be determined by performing three simple 
tests on the motor:

 a No-Load Test,
 a Locked-Rotor Test, and

 a Stator Resistance Test.

Determining the Model Parameters

The No-Load Test
The core-loss parameters Rfe and Xm can be determined by 

performing a No-Load Test on an induction motor.

The No-Load Test is performed by applying rated voltage to the 
stator windings of the motor and measuring the magnitude of 
the lines currents and the real power supplied to the motor 
while leaving the rotor de-coupled from its mechanical load    
(i.e. – no load).
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The No-Load Test
Under ideal no-load conditions, the rotor will rotate at the motor’s 

synchronous speed (nr = ns), and thus:

and:

(open circuit)𝑹𝒓
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The No-Load Test
Thus, under no-load conditions, the rotor conductor current 𝑰′෩𝒓 must 

be zero:

resulting in the parallel combination of branches containing the 
core-loss elements Rfe and Xm. being the only active part of the 
circuit.
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Apply rated voltage 𝑽𝑵𝑳 to the stator-windings of the motor under 
no-load conditions and measure the current 𝑰𝑵𝑳 and the real 
power 𝑷𝑵𝑳 supplied to each phase of the stator.

The values of the core-loss elements can be determined from:
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ଶ
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ଶ

The No-Load Test

feR mjX

NLI

NLV

NLP

The Locked-Rotor Test
The winding-loss parameters Req and Xeq can be determined by 

performing a Locked-Rotor Test on the motor.

The Locked-Rotor Test is performed by supplying a voltage to 
the stator windings of the motor and measuring the magnitude 
of the lines currents and the real power supplied to the motor 
while the rotor is locked in place (i.e. – the rotor can’t rotate).
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The Locked-Rotor Test
Under locked-rotor conditions, the rotational speed of the rotor will 

be zero (nr = 0), and thus:

and:
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The Locked-Rotor Test
And since the impedance magnitudes of Rfe and Xm are typically 

much larger than those of Req and Xeq, the elements Rfe and Xm
can be neglected under locked-rotor conditions without greatly 
affecting the accuracy of the model.
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Apply a voltage 𝑽𝑳𝑹 to the stator-windings of the motor under 
locked-rotor conditions and measure the current 𝑰𝑹𝑳 and the    
real power 𝑷𝑹𝑳 supplied to each phase of the stator.

The values of the winging-loss elements can be determined from:
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The No-Load and Locked-Rotor Tests allowed us to solve for the 
parameters:

Rfe , Xm , Req , and Xeq

similar to the Open-Circuit and Short-Circuit Tests for a 
transformer, but there’s one remaining parameter that we must 
also determine in order to utilize the equivalent circuit.

Determining the Model Parameters

119

120



61

'~
rI







 
s

s
Rr

1'

eqR eqjX

feR mjXphV
~

phI
~

The parameter       represents the resistance of the rotor-conductor
circuit referred to the stator side of the model.

But the resistance of the rotor circuit, which consists of multiple 
sets of rotor conductors, whose ends are shorted together, cannot 
be determined directly because there is no practical way to 
perform test only on the rotor circuit.

Determining the Model Parameters
𝑹𝒓ᇱ
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On the other hand, the previously determined parameter         is the 
sum of the stator winding and rotor-conductor resistances:

and the stator winding resistance can be measured directly.

Determining the Model Parameters
𝑹𝒆𝒒
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The Stator Resistance Test
Using an Ohmmeter, measure the resistance of the stator windings 

and then use the result to determine the rotor-circuit resistance:
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𝑹𝒓ᇱ ൌ 𝑹𝒆𝒒 െ 𝑹𝒔
Note that, since an ohmmeter measures DC resistance, a scaling factor of 1.25 may be applied to 
the measured stator winding resistance value for larger induction motors in order to account for 

the increased resistance under AC conditions due to skin-effect.

This factor will not be applied to any measurements taken in the Q-215 lab due to the small size 
of the Lab Volt induction motors.

'~
rI







 
s

s
Rr

1'

eqR eqjX

feR mjXphV
~

phI
~

Now that all of the model parameters have been determined, the 
equivalent circuit can be utilized in order to predict the modeled 
induction motor’s operation at any rotational speed (or slip) if the 
supply voltage is known.

Determining the Model Parameters
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