Southern Polytechnic State University	ECET 2111 Laboratory Exercise No. 8
Electrical & Computer Engineering Technolog	gy Parallel Resonance

 Name:

 Date:

Introduction

In this exercise you will determine the resonant characteristics of a parallel RLC network.

Pre-Lab Calculations

1. Calculate the resonant and cutoff frequencies for the circuit shown in Figure 1, along with the bandwidth and the quality factor.

$$fp = _____ Hz, \qquad f1 = ____ Hz, \qquad f2 = ___ Hz$$
$$BW = ____ Hz, \qquad Q_{ckt} = ____$$

2. Simulate the circuit shown in Figure 1 with PSpice using the AC Sweep analysis. Choose a start frequency of 100 Hz and an ending frequency of 100k Hz. Print the plot of V_{OUT} / V_{IN} magnitude (in dB). Also print the plot of the phase voltage of V_{OUT} by inserting a vphase marker at the point V_{OUT} in the circuit.

Figure 1

Procedure

1. Connect the circuit shown in Figure 1 with the exception of R_L . Do **NOT** include the resistor R_L , it is part of the inductor. Set V_S to 5 volts peak and be sure to maintain this voltage throughout the experiment.

Experimentally find f_P by adjusting the frequency until zero degree's phase shift is obtained between the load voltage (V_{OUT}) and the source voltage (V_{IN}). Record this frequency in the table below. *What is the importance of zero degree's phase shift at resonance?*

- 2. Measure the peak load voltage at the resonant frequency. Divide the voltage just found by $\sqrt{2}$. Adjust the frequency slightly below f_P until you obtain the voltage just calculated. This will be the first half-power frequency f_1 . Record this value the table below.
- 3. Now adjust the frequency slightly above the resonant frequency until you reach the same calculated voltage from step two. This will be the second half-power frequency f_2 . Record this value in the table below.

What is the importance of dividing by the $\sqrt{2}$ in order to find the voltage at f_1 and f_2 ?

Measured Values:

f _P (Hz)	f ₁ (Hz)	f ₂ (Hz)

4. Determine the Bandwidth and circuit Q from the measured values in the table above.

BW (Hz)	Q _{ckt}

Section B

If the CAT system is unavailable, then skip to Section C.

5. Using the CAT system take 200 data points starting at 100 Hz and ending at 100 KHz. Use a source voltage of 5 Volts peak. Plot the magnitude vs. frequency and print. *The data file will be used in the Report Guide section. Be sure and save your data file!*

Section C (do this section only if the CAT system is unavailable at lab time)

- 5. Measure and record each of the load voltage magnitudes and phase angles specified in the table below.
- 6. Calculate the theoretical load voltage magnitude and phase angle (with respect to the source voltage) for each specified frequency. Record your results in table below. (R_{Load} = "Load") *Using Mathcad for these calculations will help simplify this step.*

Frequency (Hz)	V _L (_{Meas}) (V)	<u>/_</u> V _{L(Meas}) (°)	V _L (_{Calc}) (V)	$/_V_{L(Calc})$ (°)
0.1* f _P				
0.5* f _P				
0.9* f _p				
f _P				
1.1* f _p				
2.0* f _P				
10 * f _P				

Report Guide

If CAT system was used:

- 1. Using the CAT system measured data file, plot the magnitude data as a function of frequency. Use a logarithmic scale for the (frequency) x-axis.
- 2. Compare the measured values obtained in procedure steps 1 thru 3 with the theoretical values found in the Pre-Lab section. Explain any differences.
- 3. Compare and contrast the operating characteristics of series and parallel resonant circuits.

If the CAT system was not used:

••

- 1. Compare the measured values obtained in procedure steps 1 thru 3 with the theoretical values found in the Pre-Lab section. Explain any differences.
- 2. On a single graph, plot both the measured and theoretical voltage magnitudes found in Section C as a function of frequency. Use a logarithmic scale for the (frequency) x-axis.
- 3. On a second graph, plot both the measured and theoretical voltage angles found in Section C as a function of frequency. Use a logarithmic scale for the (frequency) x-axis.
- 4. Compare the measured voltages with the theoretical voltages. Explain any differences.
- 5. Compare and contrast the operating characteristics of series and parallel resonant circuits.